On the Sum-of-Squares Degree of Symmetric Quadratic Functions

被引:7
作者
Lee, Troy [1 ,2 ]
Prakash, Anupam [1 ]
de Wolf, Ronald [3 ,4 ,5 ]
Yuen, Henry [6 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[2] Ctr Quantum Technol, Singapore, Singapore
[3] QuSoft, Amsterdam, Netherlands
[4] CWI, Amsterdam, Netherlands
[5] Univ Amsterdam, Amsterdam, Netherlands
[6] MIT, Cambridge, MA 02139 USA
来源
31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016) | 2016年 / 50卷
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Sum-of-squares degree; approximation theory; Positivstellensatz refutations of knapsack; quantum query complexity in expectation; extension complexity; COMPLEXITY; POSITIVSTELLENSATZ; POLYNOMIALS; BOUNDS;
D O I
10.4230/LIPIcs.CCC.2016.17
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study how well functions over the boolean hypercube of the form f(k)(x) = (vertical bar x vertical bar-k)(vertical bar x vertical bar-k-1) can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the case of approximation in l(infinity)-norm as well as in l(1)-norm. We describe three complexity-theoretic applications: (1) a proof that the recent breakthrough lower bound of Lee, Raghavendra, and Steurer [19] on the positive semidefinite extension complexity of the correlation and TSP polytopes cannot be improved further by showing better sum-of-squares degree lower bounds on l(1)-approximation of f(k); (2) a proof that Grigoriev's lower bound on the degree of Positivstellensatz refutations for the knapsack problem is optimal, answering an open question from [12]; (3) bounds on the query complexity of quantum algorithms whose expected output approximates such functions.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] The Relation between Polynomial Calculus, Sherali-Adams, and Sum-of-Squares Proofs
    Berkholz, Christoph
    35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
  • [22] Connections between structured tight frames and sum-of-squares optimization
    Bandeira, Afonso S.
    Kunisky, Dmitriy
    WAVELETS AND SPARSITY XVIII, 2019, 11138
  • [23] Sum-of-Squares Lower Bounds for Densest k-Subgraph
    Jones, Chris
    Potechin, Aaron
    Rajendran, Goutham
    Xu, Jeff
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 84 - 95
  • [24] Explicit Lower Bounds Against Ω(n)-Rounds of Sum-of-Squares
    Hopkins, Max
    Lin, Ting-Chun
    2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 662 - 673
  • [25] The sum-of-squares hierarchy on the sphere and applications in quantum information theory
    Fang, Kun
    Fawzi, Hamza
    MATHEMATICAL PROGRAMMING, 2021, 190 (1-2) : 331 - 360
  • [26] NP-Hardness of balanced minimum sum-of-squares clustering
    Pyatkin, Artem
    Aloise, Daniel
    Mladenovic, Nenad
    PATTERN RECOGNITION LETTERS, 2017, 97 : 44 - 45
  • [27] FINITE CONVERGENCE OF SUM-OF-SQUARES HIERARCHIES FOR THE STABILITY NUMBER OF A GRAPH
    Laurent, Monique
    Vargas, Luis Felipe
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 491 - 518
  • [28] Fast ADMM for Sum-of-Squares Programs Using Partial Orthogonality
    Zheng, Yang
    Fantuzzi, Giovanni
    Papachristodoulou, Antonis
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (09) : 3869 - 3876
  • [29] A NEARLY TIGHT SUM-OF-SQUARES LOWER BOUND FOR THE PLANTED CLIQUE PROBLEM
    Barak, Boaz
    Hopkins, Samuel
    Kelner, Jonathan
    Kothari, Pravesh K.
    Moitra, Ankur
    Potechin, Aaron
    SIAM JOURNAL ON COMPUTING, 2019, 48 (02) : 687 - 735
  • [30] On the conservatism of the sum-of-squares method for analysis of time-delayed systems
    Peet, Matthew M.
    Bliman, Pierre-Alexandre
    AUTOMATICA, 2011, 47 (11) : 2406 - 2411