On the Sum-of-Squares Degree of Symmetric Quadratic Functions

被引:7
作者
Lee, Troy [1 ,2 ]
Prakash, Anupam [1 ]
de Wolf, Ronald [3 ,4 ,5 ]
Yuen, Henry [6 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[2] Ctr Quantum Technol, Singapore, Singapore
[3] QuSoft, Amsterdam, Netherlands
[4] CWI, Amsterdam, Netherlands
[5] Univ Amsterdam, Amsterdam, Netherlands
[6] MIT, Cambridge, MA 02139 USA
来源
31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016) | 2016年 / 50卷
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Sum-of-squares degree; approximation theory; Positivstellensatz refutations of knapsack; quantum query complexity in expectation; extension complexity; COMPLEXITY; POSITIVSTELLENSATZ; POLYNOMIALS; BOUNDS;
D O I
10.4230/LIPIcs.CCC.2016.17
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study how well functions over the boolean hypercube of the form f(k)(x) = (vertical bar x vertical bar-k)(vertical bar x vertical bar-k-1) can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the case of approximation in l(infinity)-norm as well as in l(1)-norm. We describe three complexity-theoretic applications: (1) a proof that the recent breakthrough lower bound of Lee, Raghavendra, and Steurer [19] on the positive semidefinite extension complexity of the correlation and TSP polytopes cannot be improved further by showing better sum-of-squares degree lower bounds on l(1)-approximation of f(k); (2) a proof that Grigoriev's lower bound on the degree of Positivstellensatz refutations for the knapsack problem is optimal, answering an open question from [12]; (3) bounds on the query complexity of quantum algorithms whose expected output approximates such functions.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Rounding Sum-of-Squares Relaxations
    Barak, Boaz
    Kelner, Jonathan A.
    Steurer, David
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 31 - 40
  • [2] Sum-of-Squares Lower Bounds for Planted Clique
    Meka, Raghu
    Potechin, Aaron
    Wigderson, Avi
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 87 - 96
  • [3] Sum-of-Squares Lower Bounds for Sparse PCA
    Ma, Tengyu
    Wigderson, Avi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [4] Sum-of-Squares Geometry Processing
    Marschner, Zoe
    Zhang, Paul
    Palmer, David
    Solomon, Justin
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (06):
  • [5] Sum-of-squares for bounded rationality
    Benavoli, Alessio
    Facchini, Alessandro
    Piga, Dario
    Zaffalon, Marco
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2019, 105 : 130 - 152
  • [6] Theory and applications of the sum-of-squares technique
    Bach, Francis
    Cornacchia, Elisabetta
    Pesce, Luca
    Piccioli, Giovanni
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (10):
  • [7] Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation)
    Barak, Boaz
    Brakerski, Zvika
    Komargodski, Ilan
    Kothari, Pravesh K.
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT II, 2018, 10821 : 649 - 679
  • [8] SUM-OF-SQUARES OPTIMIZATION WITHOUT SEMIDEFINITE PROGRAMMING
    Papp, David
    Yildiz, Sercan
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) : 822 - 851
  • [9] Sum-of-Squares Hierarchies for Binary Polynomial Optimization
    Slot, Lucas
    Laurent, Monique
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2021, 2021, 12707 : 43 - 57
  • [10] Sum-of-squares hierarchies for binary polynomial optimization
    Slot, Lucas
    Laurent, Monique
    MATHEMATICAL PROGRAMMING, 2023, 197 (02) : 621 - 660