Automatic MR Prostate Segmentation by Deep Learning with Holistically-Nested Networks

被引:8
作者
Cheng, Ruida [1 ]
Roth, Holger R. [2 ]
Lay, Nathan [2 ]
Lu, Le [2 ]
Turkbey, Baris [3 ]
Gandler, William [1 ]
McCreedy, Evan S. [1 ]
Choyke, Peter [3 ]
Summers, Ronald M. [2 ]
McAuliffe, Matthew J. [1 ]
机构
[1] NIH, Imaging Sci Lab, Ctr Informat Technol, Bldg 10, Bethesda, MD 20892 USA
[2] NIH, Imaging Biomarkers & CAD Lab, Ctr Clin, Bldg 10, Bethesda, MD 20892 USA
[3] NCI, Mol Imaging Program, NIH, Bethesda, MD 20892 USA
来源
MEDICAL IMAGING 2017: IMAGE PROCESSING | 2017年 / 10133卷
基金
美国国家卫生研究院;
关键词
D O I
10.1117/12.2254558
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Accurate automatic prostate magnetic resonance image (MRI) segmentation is a challenging task due to the high variability of prostate anatomic structure. Artifacts such as noise and similar signal intensity tissues around the prostate boundary inhibit traditional segmentation methods from achieving high accuracy. The proposed method performs end-to-end segmentation by integrating holistically nested edge detection with fully convolutional neural networks. Holistically-nested networks (HNN) automatically learn the hierarchical representation that can improve prostate boundary detection. Quantitative evaluation is performed on the MRI scans of 247 patients in 5-fold cross-validation. We achieve a mean Dice Similarity Coefficient of 88.70% and a mean Jaccard Similarity Coefficient of 80.29% without trimming any erroneous contours at apex and base.
引用
收藏
页数:6
相关论文
共 9 条
[1]  
[Anonymous], V-net: Fully convolutional neural networks for volumetric medical image segmentation
[2]  
[Anonymous], MICCAI IN PRESS
[3]  
[Anonymous], MICCAI IN PRESS
[4]  
[Anonymous], IEEE T MED IMAGING
[5]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[6]  
Liao S, 2013, LECT NOTES COMPUT SC, V8150, P254, DOI 10.1007/978-3-642-40763-5_32
[7]  
Roth HolgerR., 2016, SPIE Medical Imaging, p97850P
[8]  
Simonyan K., 2014, P 3 INT C LEARN REP, P1
[9]  
Xie SN, 2015, IEEE I CONF COMP VIS, P1395, DOI [10.1109/ICCV.2015.164, 10.1007/s11263-017-1004-z]