Energy growth in subcritical viscoelastic pipe flows

被引:8
|
作者
Zhang, Mengqi [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117575, Singapore
关键词
Viscoelastic flows; Pipe flows; FENE-P model; Transient growth; Resolvent analysis; TURBULENT DRAG REDUCTION; LINEAR-STABILITY; OLDROYD-B; COUETTE-FLOW; CONFORMATION TENSOR; OPTIMAL EXCITATION; TRANSIENT GROWTH; CHANNEL FLOWS; AMPLIFICATION; DISTURBANCES;
D O I
10.1016/j.jnnfm.2021.104581
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work studies the dynamics of linear non-modal waves in viscoelastic pipe flows of FENE-P fluids using transient growth and resolvent analyses. We particularly focus on the time evolution of the amplification of the disturbance energy (using the 4th-order Runge-Kutta method) and discuss the dynamical traits of the Orr and the critical-layer mechanisms in the conformation tensor field when the transient energy increases. The helical mode undergoes a larger energy growth than the axisymmetric mode. The effects of various flow parameters have been investigated on the growth rate and energy amplification of the non-modal waves and the optimal flow structures. It is found that when the elastic effect is stronger, the amplitude of the optimal conformation tensor in the pipe centre region becomes greater from a non-modal perspective.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Sedimentation of particles in shear flows of viscoelastic fluids
    Bazilevskii, A. V.
    Koroteev, D. A.
    Rozhkov, A. N.
    Skobeleva, A. A.
    FLUID DYNAMICS, 2010, 45 (04) : 626 - 637
  • [42] Sedimentation of particles in shear flows of viscoelastic fluids
    A. V. Bazilevskii
    D. A. Koroteev
    A. N. Rozhkov
    A. A. Skobeleva
    Fluid Dynamics, 2010, 45 : 626 - 637
  • [43] Secondary flows of viscoelastic fluids in serpentine microchannels
    Ducloue, Lucie
    Casanellas, Laura
    Haward, Simon J.
    Poole, Robert J.
    Alves, Manuel A.
    Lerouge, Sandra
    Shen, Amy Q.
    Lindner, Anke
    MICROFLUIDICS AND NANOFLUIDICS, 2019, 23 (03)
  • [44] Stress modes in linear stability of viscoelastic flows
    Renardy, Michael
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2009, 159 (1-3) : 137 - 140
  • [45] Highly parallel time integration of viscoelastic flows
    Caola, AE
    Joo, YL
    Armstrong, RC
    Brown, RA
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2001, 100 (1-3) : 191 - 216
  • [46] Computational modeling of multiphase viscoelastic and elastoviscoplastic flows
    Izbassarov, Daulet
    Rosti, Marco E.
    Ardekani, M. Niazi
    Sarabian, Mohammad
    Hormozi, Sarah
    Brandt, Luca
    Tammisola, Outi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 88 (12) : 521 - 543
  • [47] Time decay rates for the compressible viscoelastic flows
    Wu, Guochun
    Gao, Zhensheng
    Tan, Zhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) : 990 - 1004
  • [48] Viscoelastic flows of Maxwell fluids with conservation laws
    Boyaval, Sebastien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (03): : 807 - 831
  • [49] Transient viscoelastic helical flows in pipes of circular and annular cross-section
    Wood, WP
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2001, 100 (1-3) : 115 - 126
  • [50] A material point method for simulation of viscoelastic flows
    Peter A. Gordon
    Fushen Liu
    Holger A. Meier
    Rohan Panchadhara
    Vikas Srivastava
    Computational Particle Mechanics, 2019, 6 : 311 - 325