Energy growth in subcritical viscoelastic pipe flows

被引:8
|
作者
Zhang, Mengqi [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117575, Singapore
关键词
Viscoelastic flows; Pipe flows; FENE-P model; Transient growth; Resolvent analysis; TURBULENT DRAG REDUCTION; LINEAR-STABILITY; OLDROYD-B; COUETTE-FLOW; CONFORMATION TENSOR; OPTIMAL EXCITATION; TRANSIENT GROWTH; CHANNEL FLOWS; AMPLIFICATION; DISTURBANCES;
D O I
10.1016/j.jnnfm.2021.104581
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work studies the dynamics of linear non-modal waves in viscoelastic pipe flows of FENE-P fluids using transient growth and resolvent analyses. We particularly focus on the time evolution of the amplification of the disturbance energy (using the 4th-order Runge-Kutta method) and discuss the dynamical traits of the Orr and the critical-layer mechanisms in the conformation tensor field when the transient energy increases. The helical mode undergoes a larger energy growth than the axisymmetric mode. The effects of various flow parameters have been investigated on the growth rate and energy amplification of the non-modal waves and the optimal flow structures. It is found that when the elastic effect is stronger, the amplitude of the optimal conformation tensor in the pipe centre region becomes greater from a non-modal perspective.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Adaptive solutions for viscoelastic flows
    Mutlu, I
    Townsend, P
    Webster, MF
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1996, 12 (10): : 643 - 655
  • [22] Finite Amplitude Stability of Internal Steady Flows of the Giesekus Viscoelastic Rate-Type Fluid
    Dostalik, Mark
    Prusa, Vit
    Tuma, Karel
    ENTROPY, 2019, 21 (12)
  • [23] Amplification of localized body forces in channel flows of viscoelastic fluids
    Hariharan, Gokul
    Jovanovic, Mihailo R.
    Kumar, Satish
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2018, 260 : 40 - 53
  • [24] ENERGY LOSS OF PIPE FLOWS STRATIFIED WITH SUSPENDED-LOAD AND BED-LOAD
    戴继岚
    夏震寰
    Science China Mathematics, 1988, (07) : 853 - 869
  • [25] Numerical Methods for Viscoelastic Fluid Flows
    Alves, M. A.
    Oliveira, P. J.
    Pinho, F. T.
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 53, 2021, 53 : 509 - 541
  • [26] Efficient computation of the spectrum of viscoelastic flows
    Valerio, J. V.
    Carvalho, M. S.
    Tomei, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (04) : 1172 - 1187
  • [27] Viscoelastic laminar drag bounds in pipe flow
    Malik, M.
    Bouffanais, Roland
    Skote, Martin
    PHYSICS OF FLUIDS, 2020, 32 (03)
  • [28] On viscoelastic cavitating flows: A numerical study
    Naseri, Homa
    Koukouvinis, Phoevos
    Malgarinos, Ilias
    Gavaises, Manolis
    PHYSICS OF FLUIDS, 2018, 30 (03)
  • [29] Viscoelastic secondary flows in serpentine channels
    Poole, R. J.
    Lindner, A.
    Alves, M. A.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2013, 201 : 10 - 16
  • [30] Numerical simulation of viscoelastic contraction flows
    Alves, MA
    Oliveira, PJ
    Pinho, FT
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 826 - 829