Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces

被引:22
|
作者
Choi, Young-Pil [1 ]
机构
[1] Tech Univ Munich, Fak Math, Boltzmannstr 3, D-85748 Garching, Germany
基金
英国工程与自然科学研究理事会;
关键词
global existence of classical solutions; large-time behavior; Vlasov equation; nonlinear Fokker-Planck equation; hypocoercivity; EULER EQUATIONS; EXISTENCE;
D O I
10.1088/0951-7715/29/7/1887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the global well-posedness and time-asymptotic decay of the Vlasov-Fokker-Planck equation with local alignment forces. The equation can be formally derived from an agent-based model for self-organized dynamics called the Motsch-Tadmor model with noises. We present the global existence and uniqueness of classical solutions to the equation around the global Maxwellian in the whole space. For the large-time behavior, we show the algebraic decay rate of solutions towards the equilibrium under suitable assumptions on the initial data. We also remark that the rate of convergence is exponential when the spatial domain is periodic. The main methods used in this paper are the classical energy estimates combined with hyperbolic-parabolic dissipation arguments.
引用
收藏
页码:1887 / 1916
页数:30
相关论文
共 50 条
  • [31] Parabolic limit and stability of the Vlasov-Fokker-Planck system
    Poupaud, F
    Soler, J
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (07): : 1027 - 1045
  • [32] SPECTRUM OF A VLASOV-FOKKER-PLANCK OPERATOR .2.
    PAVERIFONTANA, S
    WILLIS, BL
    ZWEIFEL, PF
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1981, 10 (04): : 137 - 147
  • [33] Quantified overdamped limit for kinetic Vlasov-Fokker-Planck equations with singular interaction forces
    Choi, Young-Pil
    Tse, Oliver
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 330 : 150 - 207
  • [34] The Linearized Vlasov and Vlasov-Fokker-Planck Equations in a Uniform Magnetic Field
    Bedrossian, Jacob
    Wang, Fei
    JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (02) : 552 - 594
  • [35] Integral propagator solvers for Vlasov-Fokker-Planck equations
    Donoso, J. M.
    del Rio, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) : F449 - F456
  • [36] GLOBAL CLASSICAL SOLUTIONS CLOSE TO EQUILIBRIUM TO THE VLASOV-FOKKER-PLANCK-EULER SYSTEM
    Carrillo, Jose A.
    Duan, Renjun
    Moussa, Ayman
    KINETIC AND RELATED MODELS, 2011, 4 (01) : 227 - 258
  • [37] Global existence of classical solutions to the Fokker-Planck-BGK equation
    Zhang, Xianwen
    JOURNAL OF STATISTICAL PHYSICS, 2008, 132 (03) : 535 - 550
  • [38] Global Existence of Classical Solutions to the Fokker-Planck-BGK Equation
    Xianwen Zhang
    Journal of Statistical Physics, 2008, 132 : 535 - 550
  • [39] A code to solve the Vlasov-Fokker-Planck equation applied to particle transport in magnetic turbulence
    Hornsby, W. A.
    Bell, A. R.
    Kingham, R. J.
    Dendy, R. O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (07)
  • [40] Incompressible Navier-Stokes limit from nonlinear Vlasov-Fokker-Planck equation
    Choi, Young-Pil
    Jung, Jinwook
    APPLIED MATHEMATICS LETTERS, 2024, 158