Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces

被引:22
|
作者
Choi, Young-Pil [1 ]
机构
[1] Tech Univ Munich, Fak Math, Boltzmannstr 3, D-85748 Garching, Germany
基金
英国工程与自然科学研究理事会;
关键词
global existence of classical solutions; large-time behavior; Vlasov equation; nonlinear Fokker-Planck equation; hypocoercivity; EULER EQUATIONS; EXISTENCE;
D O I
10.1088/0951-7715/29/7/1887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the global well-posedness and time-asymptotic decay of the Vlasov-Fokker-Planck equation with local alignment forces. The equation can be formally derived from an agent-based model for self-organized dynamics called the Motsch-Tadmor model with noises. We present the global existence and uniqueness of classical solutions to the equation around the global Maxwellian in the whole space. For the large-time behavior, we show the algebraic decay rate of solutions towards the equilibrium under suitable assumptions on the initial data. We also remark that the rate of convergence is exponential when the spatial domain is periodic. The main methods used in this paper are the classical energy estimates combined with hyperbolic-parabolic dissipation arguments.
引用
收藏
页码:1887 / 1916
页数:30
相关论文
共 50 条
  • [21] Instability in a Vlasov-Fokker-Planck binary mixture
    Zhang, Zhu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) : 1514 - 1535
  • [22] The diffusive limit of the Vlasov-Fokker-Planck equation with the chemotactic sensitivity coupled to a parabolic equation
    Hwang, Hyung Ju
    Jo, Hyeontae
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 1224 - 1242
  • [23] TREND TO EQUILIBRIUM AND PARTICLE APPROXIMATION FOR A WEAKLY SELFCONSISTENT VLASOV-FOKKER-PLANCK EQUATION
    Bolley, Francois
    Guillin, Arnaud
    Malrieu, Florent
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (05): : 867 - 884
  • [24] The Vlasov-Fokker-Planck equation in non-convex landscapes: convergence to equilibrium
    Manh Hong Duong
    Tugaut, Julian
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [25] Vlasov-Fokker-Planck equation: stochastic stability of resonances and unstable manifold expansion
    Barre, Julien
    Metivier, David
    NONLINEARITY, 2018, 31 (10) : 4667 - 4691
  • [26] Conservative stabilized Runge-Kutta methods for the Vlasov-Fokker-Planck equation
    Almuslimani, Ibrahim
    Crouseilles, Nicolas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 488
  • [27] TREND TO EQUILIBRIUM FOR A DELAY VLASOV-FOKKER-PLANCK EQUATION AND EXPLICIT DECAY ESTIMATES
    Klar, Axel
    Kreusser, Lisa
    Tse, Oliver
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) : 3277 - 3298
  • [28] Global weak solutions to a Vlasov-Fokker-Planck/compressible non-Newtonian fluid system of equations
    Zhu, Huan
    Fang, Li
    Muhammad, Jan
    Guo, Zhenhua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (04):
  • [29] Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system with nonhomogeneous boundary data
    Li, Yue
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [30] Stability of the Front under a Vlasov-Fokker-Planck Dynamics
    Esposito, R.
    Guo, Y.
    Marra, R.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) : 75 - 116