GREEN FUNCTION ESTIMATES FOR SUBORDINATE BROWNIAN MOTIONS: STABLE AND BEYOND

被引:26
作者
Kim, Panki [1 ,2 ]
Mimica, Ante [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
基金
新加坡国家研究基金会;
关键词
Geometric stable process; Green function; Harnack inequality; Poisson kernel; harmonic function; potential; subordinator; subordinate Brownian motion; BOUNDARY HARNACK PRINCIPLE;
D O I
10.1090/S0002-9947-2014-06017-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subordinate Brownian motion X is a Levy process which can be obtained by replacing the time of the Brownian motion by an independent subordinator. In this paper, when the Laplace exponent phi of the corresponding subordinator satisfies some mild conditions, we first prove the scale invariant boundary Harnack inequality for X on arbitrary open sets. Then we give an explicit form of sharp two-sided estimates of the Green functions of these subordinate Brownian motions in any bounded C-1,C-1 open set. As a consequence, we prove the boundary Harnack inequality for X on any C-1,C-1 open set with explicit decay rate. Unlike previous work of Kim, Song and Vondraeek, our results cover geometric stable processes and relativistic geometric stable process, i.e. the cases when the subordinator has the Laplace exponent phi(lambda) - log(1 + lambda(alpha/2)) (0 < alpha <= 2, d >alpha) and phi(lambda) = log(1 + (lambda + m(2/alpha))(alpha/2) - m) (0 < alpha < 2, m > 0, d > 2)
引用
收藏
页码:4383 / 4422
页数:40
相关论文
共 23 条
[1]  
[Anonymous], 1974, Advances in probability and related topics
[2]  
[Anonymous], 2012, Interdiscip. Math. Sci., DOI DOI 10.1142/9789814383585
[3]  
[Anonymous], 2012, ELECTRON J PROBAB
[4]  
Bertoin Jean, 1996, CAMBRIDGE TRACTS MAT, V121
[5]  
Bingham N. H., 1987, ENCY MATH ITS APPL, V27
[6]   Sharp estimates for the Green function in Lipschitz domains [J].
Bogdan, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (02) :326-337
[7]   Estimates and structure of α-harmonic functions [J].
Bogdan, Krzysztof ;
Kulczycki, Tadeusz ;
Kwasnicki, Mateusz .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (3-4) :345-381
[8]   DIRICHLET HEAT KERNEL ESTIMATES FOR Δα/2 + Δβ/2 [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (04) :1357-1392
[9]   SHARP GREEN FUNCTION ESTIMATES FOR Δ + Δα/2 IN C1,1 OPEN SETS AND THEIR APPLICATIONS [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming ;
Vondracek, Zoran .
ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (03) :981-1024
[10]   BOUNDARY HARNACK PRINCIPLE FOR Δ + Δα/2 [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming ;
Vondracek, Zoran .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (08) :4169-4205