E-RAFT: Dense Optical Flow from Event Cameras

被引:83
作者
Gehrig, Mathias [1 ]
Millhaeusler, Mario
Gehrig, Daniel
Scaramuzza, Davide
机构
[1] Univ Zurich, Dept Informat, Zurich, Switzerland
来源
2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021) | 2021年
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
VISION;
D O I
10.1109/3DV53792.2021.00030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose to incorporate feature correlation and sequential processing into dense optical flow estimation from event cameras. Modern frame-based optical flow methods heavily rely on matching costs computed from feature correlation. In contrast, there exists no optical flow method for event cameras that explicitly computes matching costs. Instead, learning-based approaches using events usually resort to the U-Net architecture to estimate optical flow sparsely. Our key finding is that the introduction of correlation features significantly improves results compared to previous methods that solely rely on convolution layers. Compared to the state-of-the-art, our proposed approach computes dense optical flow and reduces the end-point error by 23% on MVSEC. Furthermore, we show that all existing optical flow methods developed so far for event cameras have been evaluated on datasets with very small displacement fields with maximum flow magnitude of 10 pixels. Based on this observation, we introduce a new real-world dataset that exhibits displacement fields with magnitudes up to 210 pixels and 3 times higher camera resolution. Our proposed approach reduces the end-point error on this dataset by 66%.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 41 条
[1]  
Almatrafi M. M., 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence
[2]  
[Anonymous], 2015, P IEEE C COMP VIS PA, DOI DOI 10.1109/CVPR.2015.7298925
[3]   Simultaneous Optical Flow and Intensity Estimation from an Event Camera [J].
Bardow, Patrick ;
Davison, Andrew J. ;
Leutenegger, Stefan .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :884-892
[4]   Event-Based Visual Flow [J].
Benosman, Ryad ;
Clercq, Charles ;
Lagorce, Xavier ;
Ieng, Sio-Hoi ;
Bartolozzi, Chiara .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (02) :407-417
[5]   Asynchronous frameless event-based optical flow [J].
Benosman, Ryad ;
Ieng, Sio-Hoi ;
Clercq, Charles ;
Bartolozzi, Chiara ;
Srinivasan, Mandyam .
NEURAL NETWORKS, 2012, 27 :32-37
[6]  
Brosch T, 2015, FRONT NEUROSCI-SWITZ, V9, DOI [10.3389/fnins.7015.00137, 10.3389/fnins.2015.00137]
[7]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625
[8]  
Cho K., 2014, P 8 WORKSH SYNT SEM, P103
[9]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[10]   Event-Based Vision: A Survey [J].
Gallego, Guillermo ;
Delbruck, Tobi ;
Orchard, Garrick Michael ;
Bartolozzi, Chiara ;
Taba, Brian ;
Censi, Andrea ;
Leutenegger, Stefan ;
Davison, Andrew ;
Conradt, Jorg ;
Daniilidis, Kostas ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :154-180