Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors

被引:64
作者
Chu, Leiqiang [1 ,2 ]
Schmidt, Hennrik [1 ,2 ]
Pu, Jiang
Wang, Shunfeng [1 ,2 ]
Oezyilmaz, Barbaros [1 ,2 ]
Takenobu, Taishi [4 ,5 ,6 ]
Eda, Goki [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore
[2] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[3] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[4] Waseda Univ, Dept Adv Sci & Engn, Tokyo 1698555, Japan
[5] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
[6] Waseda Univ, Kagami Mem Lab Mat Sci & Technol, Tokyo 1690051, Japan
基金
新加坡国家研究基金会;
关键词
THIN-FILM TRANSISTORS; INTEGRATED-CIRCUITS; MONOLAYER; MOBILITY; LIQUID; TRANSITION; STATES; WS2;
D O I
10.1038/srep07293
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Charge transport in MoS2 in the low carrier density regime is dominated by trap states and band edge disorder. The intrinsic transport properties of MoS2 emerge in the high density regime where conduction occurs via extended states. Here, we investigate the transport properties of mechanically exfoliated mono-, bi-, and trilayer MoS2 sheets over a wide range of carrier densities realized by a combination of ion gel top gate and SiO2 back gate, which allows us to achieve high charge carrier (>10(13) cm(-2)) densities. We discuss the gating properties of the devices as a function of layer thickness and demonstrate resistivities as low as 1 k Omega for monolayer and 420 Omega for bilayer devices at 10 K. We show that from the capacitive coupling of the two gates, quantum capacitance can be roughly estimated to be on the order of 1 mu F/cm(2) for all devices studied. The temperature dependence of the carrier mobility in the high density regime indicates that short-range scatterers limit charge transport at low temperatures.
引用
收藏
页数:6
相关论文
共 49 条
[1]   Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2 [J].
Baugher, Britton W. H. ;
Churchill, Hugh O. H. ;
Yang, Yafang ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2013, 13 (09) :4212-4216
[2]   Quantitative Determination of the Band Gap of WS2 with Ambipolar Ionic Liquid-Gated Transistors [J].
Braga, Daniele ;
Lezama, Ignacio Gutierrez ;
Berger, Helmuth ;
Morpurgo, Alberto F. .
NANO LETTERS, 2012, 12 (10) :5218-5223
[3]   Monolayer diodes light up [J].
Bratschitsch, Rudolf .
NATURE NANOTECHNOLOGY, 2014, 9 (04) :247-248
[4]   High Performance Multilayer MoS2 Transistors with Scandium Contacts [J].
Das, Saptarshi ;
Chen, Hong-Yan ;
Penumatcha, Ashish Verma ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (01) :100-105
[5]   Multiband transport in bilayer graphene at high carrier densities [J].
Efetov, Dmitri K. ;
Maher, Patrick ;
Glinskis, Simas ;
Kim, Philip .
PHYSICAL REVIEW B, 2011, 84 (16)
[6]   Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities [J].
Efetov, Dmitri K. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[7]  
Ghatak S, 2011, ACS NANO, V5, P7707, DOI [10.1021/nn202852J, 10.1021/nn202852j]
[8]   Defect-induced conductivity anisotropy in MoS2 monolayers [J].
Ghorbani-Asl, Mahdi ;
Enyashin, Andrey N. ;
Kuc, Agnieszka ;
Seifert, Gotthard ;
Heine, Thomas .
PHYSICAL REVIEW B, 2013, 88 (24)
[9]   Band-like transport in high mobility unencapsulated single-layer MoS2 transistors [J].
Jariwala, Deep ;
Sangwan, Vinod K. ;
Late, Dattatray J. ;
Johns, James E. ;
Dravid, Vinayak P. ;
Marks, Tobin J. ;
Lauhon, Lincoln J. ;
Hersam, Mark C. .
APPLIED PHYSICS LETTERS, 2013, 102 (17)
[10]   Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering [J].
Jena, Debdeep ;
Konar, Aniruddha .
PHYSICAL REVIEW LETTERS, 2007, 98 (13)