Comparison of Monte Carlo and deterministic methods for non-adaptive optimization

被引:1
|
作者
Al-Mharmah, HA [1 ]
Calvin, JM [1 ]
机构
[1] Univ Jordan, Dept Ind Engn, Amman 11942, Jordan
关键词
D O I
10.1145/268437.268505
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we compare the average performance of Monte Carlo methods for global optimization with non-adaptive deterministic alternatives. We analyze the behavior of the algorithms under the assumption of Wiener measure on the space of continuous functions on the unit interval. In this setting we show that the primary strength of the Monte Carlo methods (compositeness) is outweighed by the primary weakness (random gap size) when compared to efficient deterministic methods.
引用
收藏
页码:348 / 351
页数:4
相关论文
共 50 条
  • [1] Comparison of deterministic and Monte Carlo methods in shielding design
    Oliveira, AD
    Oliveira, C
    RADIATION PROTECTION DOSIMETRY, 2005, 115 (1-4) : 254 - 257
  • [2] Comparison of Deterministic Approach and Monte Carlo Methods for Stochastic PERT Chart
    Doubravsky, Karel
    Doskocil, Radek
    VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 1923 - 1929
  • [3] Scalable and Efficient Non-adaptive Deterministic Group Testing
    Kowalski, Dariusz R.
    Pajak, Dominik
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [4] Deterministic non-adaptive contention resolution on a shared channel
    De Marco, Gianluca
    Kowalski, Dariusz R.
    Stachowiak, Grzegorz
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2023, 133 : 1 - 22
  • [5] COMPLEMENTARITY OF MONTE-CARLO AND DETERMINISTIC METHODS
    SAMBA, G
    LECTURE NOTES IN PHYSICS, 1985, 240 : 367 - 377
  • [6] Adaptive schemes for piecewise deterministic Monte Carlo algorithms
    Bertazzi, Andrea
    Bierkens, Joris
    BERNOULLI, 2022, 28 (04) : 2404 - 2430
  • [7] Markov Chain Monte Carlo Combined with Deterministic Methods for Markov Random Field Optimization
    Kim, Wonsik
    Lee, Kyoung Mu
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 1406 - 1413
  • [8] Numerical optimization of non-adaptive microphone arrays
    Goldin, AA
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 507 - 510
  • [9] Comparison of Monte Carlo and deterministic simulations of a silicon diode
    Carrillo, JA
    Gamba, IM
    Muscato, O
    Shu, CW
    TRANSPORT IN TRANSITION REGIMES, 2004, 135 : 75 - 84
  • [10] Assessment of a non-adaptive deterministic global optimization algorithm for problems with low-dimensional non-convex subspaces
    Kearfott, Ralph Baker
    Castille, Jessie M.
    Tyagi, Gaurav
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (02): : 430 - 441