Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes
被引:8
|
作者:
Gaborit, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Limoges, XLIM, UMR 6172, 123 Av Albert Thomas, F-87000 Limoges, FranceUniv Limoges, XLIM, UMR 6172, 123 Av Albert Thomas, F-87000 Limoges, France
Gaborit, Philippe
[1
]
Zemor, Gilles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, Inst Math, UMR 5251, F-33405 Talence, FranceUniv Limoges, XLIM, UMR 6172, 123 Av Albert Thomas, F-87000 Limoges, France
Zemor, Gilles
[2
]
机构:
[1] Univ Limoges, XLIM, UMR 6172, 123 Av Albert Thomas, F-87000 Limoges, France
[2] Univ Bordeaux, Inst Math, UMR 5251, F-33405 Talence, France
来源:
2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS
|
2006年
关键词:
double circulant codes;
Gilbert-Varshamov bound;
linear codes;
random coding;
D O I:
10.1109/ISIT.2006.261851
中图分类号:
TN [电子技术、通信技术];
学科分类号:
0809 ;
摘要:
The Gilbert-Varshamov bound states that the maximum size A(2)(n, d) of a binary code of length n and minimum distance d satisfies A(2)(n, d) >= 2(n)/V(n, d - 1) where V(n, d) = Sigma(d)(i=0) ((n)(i)) stands for the volume of a Hamming hall of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound could be improved to A(2)(n, d) >= cn 2(n)/V(n, d - 1) for c a constant and d/n <= 0.499. In this paper we show that certain asymptotic families of linear binary [n, n/2] double circulant codes satisfy the same improved Gilbert-Varshamov bound.
机构:
Inst Natl Rech Informat & Automat, UR Rocquencourt, Projet CODES, F-78153 Le Chesnay, FranceInst Natl Rech Informat & Automat, UR Rocquencourt, Projet CODES, F-78153 Le Chesnay, France