Synthesis of ultrafine silicon carbide nanoparticles using nonthermal arc plasma at atmospheric pressure

被引:14
|
作者
Wang, Cheng [1 ]
Zhou, Jiawen [1 ]
Song, Ming [2 ]
Lu, Zhongshan [1 ]
Chen, Xianhui [1 ]
Zheng, Yan [3 ]
Xia, Weidong [1 ]
机构
[1] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei, Peoples R China
[3] Univ Sci & Technol China, Inst Adv Technol, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
nonthermal arc plasma; photoluminescence; processing; silicon carbide; OPTICAL-EMISSION SPECTROSCOPY; GLIDING ARC; SIC NANOPARTICLES; MICROWAVE-PLASMA; CARBON; GAS; TEMPERATURE; DISCHARGE; NANOSTRUCTURES; DECOMPOSITION;
D O I
10.1111/jace.17811
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
It remains a significant challenge for the scalable production of ultrafine silicon carbide (SiC) nanoparticles with sizes smaller than 10 nm. In this work, a novel process based on atmospheric nonthermal arc plasma was proposed for the continuous synthesis of ultrafine SiC nanoparticles. This low-cost and scalable technique allows preparation of SiC nanoparticles with small size (5-9 nm) and narrow size distribution via hexamethyldisilane (HMDS) decomposition in an argon/hydrogen plasma environment. The as-synthesized products were carbon-rich beta-SiC nanoparticles with plentiful functional groups on the surface. The addition of hydrogen in plasma gas can tune the product characteristics, such as decreasing particle size, improving crystallinity, and reducing carbon and oxygen contents. Moreover, the as-prepared beta-SiC nanoparticles had a high band gap (around 2.5 eV), and their photoluminescence peak showed an obvious blueshift relative to that of bulk beta-SiC, which was mainly attributed to the quantum confinement effect induced by their ultrafine size. According to the spectral information of arc plasma, the formation of SiC nanoparticles in the plasma was discussed.
引用
收藏
页码:3883 / 3894
页数:12
相关论文
共 50 条
  • [1] Simple synthesis of ultrafine amorphous silicon carbide nanoparticles by atmospheric plasmas
    Zhou, Jiawen
    Wang, Cheng
    Song, Ming
    Chen, Xianhui
    Xia, Weidong
    MATERIALS LETTERS, 2021, 299 (299)
  • [2] Synthesis of silicon carbide using an AC atmospheric-pressure arc reactor
    Lavrenchuk, A. A.
    Speranskiy, M. Yu.
    Pak, A. Ya
    Korchagina, A. P.
    Vlasov, A. V.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1003
  • [3] Microwave-plasma synthesis of nano-sized silicon carbide at atmospheric pressure
    van Laar, J. H.
    Slabber, J. F. M.
    Meyer, J. P.
    van der Walt, I. J.
    Puts, G. J.
    Crouse, P. L.
    CERAMICS INTERNATIONAL, 2015, 41 (03) : 4326 - 4333
  • [4] Synthesis of Hafnium Carbide Powder in Atmospheric Arc Plasma
    Vassilyeva, Yu. Z.
    Povalyaev, P. V.
    Korchagina, A. P.
    Yankovsky, S. A.
    Pak, A. Ya.
    TECHNICAL PHYSICS, 2024, 69 (05) : 1434 - 1441
  • [5] Silicon Carbide Wafer Machining by Using a Single Filament Plasma at Atmospheric Pressure
    Yoo, Seungryul
    Seok, Dong Chan
    Lee, Kang Il
    Jung, Yong Ho
    Choi, Yong Sup
    COATINGS, 2021, 11 (08)
  • [6] Glass waste derived silicon carbide synthesis via direct current atmospheric arc plasma
    Pak, Alexander Ya.
    Bolatova, Zhanar
    Nikitin, Dmitriy S.
    Korchagina, Anastasia P.
    Kalinina, Natalia A.
    Ivashutenko, Aleksander S.
    WASTE MANAGEMENT, 2022, 144 : 263 - 271
  • [7] Advanced Arc Plasma Synthesis of Biomorphic Silicon Carbide Using Charcoal and Silicon Dioxide in Air
    Pak, Alexander Ya
    Larionov, Kirill B.
    Korchagina, Anastasia P.
    Yakich, Tamara Yu
    Yankovsky, Stanislav A.
    Gubin, Vladimir E.
    Slyusarskiy, Konstantin, V
    Gromov, Alexander A.
    WASTE AND BIOMASS VALORIZATION, 2022, 13 (01) : 107 - 115
  • [8] Advanced Arc Plasma Synthesis of Biomorphic Silicon Carbide Using Charcoal and Silicon Dioxide in Air
    Alexander Ya. Pak
    Kirill B. Larionov
    Anastasia P. Korchagina
    Tamara Yu. Yakich
    Stanislav A. Yankovsky
    Vladimir E. Gubin
    Konstantin V. Slyusarskiy
    Alexander A. Gromov
    Waste and Biomass Valorization, 2022, 13 : 107 - 115
  • [9] Characterization of atmospheric pressure dc gliding arc plasma
    Ni Ming-Jiang
    Yu Liang
    Li Xiao-Dong
    Tu Xin
    Wang Yu
    Yan Jian-Hua
    ACTA PHYSICA SINICA, 2011, 60 (01)
  • [10] Modification of Silicon Carbide Surfaces by Atmospheric Pressure Plasma for Composite Applications
    Rodriguez-Santiago, Victor
    Vargas-Gonzalez, Lionel
    Bujanda, Andres A.
    Baeza, Jose A.
    Fleischman, Michelle S.
    Yim, Jacqueline H.
    Pappas, Daphne D.
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) : 4725 - 4730