Convergence of paths and approximation of fixed points of asymptotically nonexpansive mappings

被引:34
作者
Chidume, CE [1 ]
Li, JL
Udomene, A
机构
[1] Abdus Salam Ctr Theoret Phys, Trieste, Italy
[2] Shawnee State Univ, Dept Math, Portsmouth, OH 45662 USA
[3] Univ Port Harcourt, Dept Math Stat & Comp Sci, Port Harcourt, Nigeria
关键词
asymptotically nonexpansive mappings; fixed points; uniformly Lipschitzian mappings;
D O I
10.1090/S0002-9939-04-07538-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be a real Banach space with a uniformly Gateaux differentiable norm possessing uniform normal structure, K be a nonempty closed convex and bounded subset of E,T:K-->K be an asymptotically nonexpansive mapping with sequence {kn}(n) subset of [1, infinity). Let u is an element of K be fixed, {tn}(n) subset of (0, 1) be such that lim (n-->infinity) t(n)=1, t(n)k(n)<1, and lim (n ->infinity) k(n)-1/k(n)-t(n) = 0. Define the sequence {zn}(n) iteratively by z(0) is an element of K, z(n+1)=(1-t(n)/k(n))u + t(n)/k(n)T(n)z(n), n=0,1,2,.... It is proved that, for each integer n >= 0, there is a unique x(n) is an element of K such that x(n)=(1-t(n)/k(n))u = t(n)/k(n)T(n)x(n). If, in addition, lim (n ->infinity) parallel to x(n)-Tx(n)parallel to = 0 and lim (n ->infinity) parallel to z(n)-Tz(n)parallel to=0, then {z(n)}(n) converges strongly to a fixed point of T.
引用
收藏
页码:473 / 480
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 1990, NONSTANDARD METHODS
[2]  
Bruck R., 1993, COLLOQ MATH-WARSAW, V65, P169, DOI [10.4064/cm-65-2-169-179, DOI 10.4064/CM-65-2-169-179]
[3]   NORMAL STRUCTURE COEFFICIENTS FOR BANACH-SPACES [J].
BYNUM, WL .
PACIFIC JOURNAL OF MATHEMATICS, 1980, 86 (02) :427-436
[4]   Some results for asymptotically pseudo-contractive mappings and asymptotically nonexpansive mappings [J].
Chang, SS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (03) :845-853
[5]   Convergence theorems for asymptotically pseudocontractive mappings [J].
Chidume, CE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (01) :1-11
[6]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC
[7]  
GOEBEL K, 1973, STUD MATH, V47, P135
[8]   FIXED-POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS [J].
GOEBEL, K ;
KIRK, WA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 35 (01) :171-&
[9]  
Goebel K., 1990, Topics on Metric Fixed Points Theory
[10]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&