Lanczos potentials and a definition of gravitational entropy for perturbed Friedman-Lemaitre-Robertson-Walker spacetimes

被引:6
作者
Mena, Filipe C. [1 ]
Tod, Paul
机构
[1] Univ Minho, Dept Matemat, P-4710 Braga, Portugal
[2] Univ Oxford, Math Inst, Oxford OX1 3LB, England
关键词
D O I
10.1088/0264-9381/24/7/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give a prescription for constructing a Lanczos potential for a cosmological model which is a purely gravitational perturbation of a Friedman-Lemaitre-Robertson-Walker spacetime. For the radiation equation of state, we find the Lanczos potential explicitly via Fourier transforms. As an application, we follow up a suggestion of Penrose (1979 Singularities and time-asymmetry General Relativity: An Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press)) and propose a definition of gravitational entropy for these cosmologies. With this definition, the gravitational entropy initially is finite if and only if the initial Wey1 tensor is finite.
引用
收藏
页码:1733 / 1745
页数:13
相关论文
共 25 条
[1]   Local existence of symmetric spinor potentials for symmetric (3,1)-spinors in Einstein space-times [J].
Andersson, F ;
Edgar, SB .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 37 (04) :273-290
[2]   QUANTUM FIELDS IN CURVED SPACE-TIMES [J].
ASHTEKAR, A ;
MAGNON, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 346 (1646) :375-394
[3]   3RD-ORDER TENSOR POTENTIALS FOR THE RIEMANN AND WEYL TENSORS [J].
BAMPI, F ;
CAVIGLIA, G .
GENERAL RELATIVITY AND GRAVITATION, 1983, 15 (04) :375-386
[4]   A Lanczos potential in Kerr geometry [J].
Bergqvist, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (06) :3142-3154
[5]   THE GRAVITATIONAL ARROW OF TIME [J].
BONNOR, WB .
PHYSICS LETTERS A, 1985, 112 (1-2) :26-28
[6]  
DOLAN P, 1995, P R SOC-MATH PHYS SC, V449, P685
[7]   SOME SOLUTIONS OF THE LANCZOS VACUUM WAVE-EQUATION [J].
DOLAN, P ;
KIM, CW .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 447 (1931) :577-585
[8]   The Lanczos potential for the Weyl curvature tensor: Existence, wave equation and algorithms [J].
Edgar, SB ;
Hoglund, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1959) :835-851
[9]  
EHLERS J, 1961, AKAD WISS LIT MAI MN, V11, P791
[10]  
Ehlers J., 1993, GEN RELAT GRAVIT, V25, P1225