Depth-weighted robust multivariate regression with application to sparse data
被引:3
作者:
Dutta, Subhajit
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, IndiaIndian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
Dutta, Subhajit
[1
]
Genton, Marc G.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi ArabiaIndian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
Genton, Marc G.
[2
]
机构:
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
来源:
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
|
2017年
/
45卷
/
02期
A robust method for multivariate regression is developed based on robust estimators of the joint location and scatter matrix of the explanatory and response variables using the notion of data depth. The multivariate regression estimator possesses desirable affine equivariance properties, achieves the best breakdown point of any affine equivariant estimator, and has an influence function which is bounded in both the response as well as the predictor variable. To increase the efficiency of this estimator, a re-weighted estimator based on robust Mahalanobis distances of the residual vectors is proposed. In practice, the method is more stable than existing methods that are constructed using subsamples of the data. The resulting multivariate regression technique is computationally feasible, and turns out to perform better than several popular robust multivariate regression methods when applied to various simulated data as well as a real benchmark data set. When the data dimension is quite high compared to the sample size it is still possible to use meaningful notions of data depth along with the corresponding depth values to construct a robust estimator in a sparse setting. The Canadian Journal of Statistics 45: 164-184; 2017 (c) 2017 Statistical Society of Canada
机构:
Univ Al Qadisiyah, Coll Adm & Econ, Dept Stat, Al Diwaniyah 50082, Iraq
Univ Putra Malaysia, Inst Math Res, Serdang 43400, MalaysiaUniv Al Qadisiyah, Coll Adm & Econ, Dept Stat, Al Diwaniyah 50082, Iraq
Uraibi, Hassan S.
Midi, Habshah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Inst Math Res, Serdang 43400, Malaysia
Univ Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, MalaysiaUniv Al Qadisiyah, Coll Adm & Econ, Dept Stat, Al Diwaniyah 50082, Iraq
Midi, Habshah
Rana, Sohel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Inst Math Res, Serdang 43400, Malaysia
East West Univ, Fac Sci & Engn, Dept Appl Stat, Dhaka 1212, BangladeshUniv Al Qadisiyah, Coll Adm & Econ, Dept Stat, Al Diwaniyah 50082, Iraq
机构:
Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan
5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, JapanUniv Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan
Sugasawa, Shonosuke
Murakami, Daisuke
论文数: 0引用数: 0
h-index: 0
机构:
Inst Stat Math, Dept Stat Data Sci, Tokyo, JapanUniv Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan