Exact pathwise simulation of multi-dimensional Ornstein-Uhlenbeck processes

被引:1
|
作者
de la Cruz, H. [1 ]
Jimenez, J. C. [2 ]
机构
[1] Fundacao Getulio Vargas, Sch Appl Math, Rio De Janeiro, Brazil
[2] Inst Cibernet Matemat & Fis, Havana, Cuba
关键词
Ornstein-Uhlenbeck process; Pathwise simulation; Exact simulation; Stochastic differential equations; DIFFERENTIAL-EQUATIONS; DRIVEN; MODEL;
D O I
10.1016/j.amc.2019.124734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exact pathwise simulation of multidimensional Ornstein-Uhlenbeck processes is considered. We propose two procedures that allow the exact pathwise simulation of this type of processes and, simultaneously, the generation of the underlying Wiener trajectories from the same source of randomness. This is particularly important when both processes are system-components in larger stochastic models, for which the study of pathwise dynamics is required. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Generalized Ornstein-Uhlenbeck processes on separable Banach spaces
    Mandrekar, V.
    Ruediger, B.
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 261 - +
  • [42] Characterising the nonequilibrium stationary states of Ornstein-Uhlenbeck processes
    Godreche, Claude
    Luck, Jean-Marc
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (03)
  • [43] Central Limit Theorems for Super Ornstein-Uhlenbeck Processes
    Yan-Xia Ren
    Renming Song
    Rui Zhang
    Acta Applicandae Mathematicae, 2014, 130 : 9 - 49
  • [44] The local time of the Markov processes of Ornstein-Uhlenbeck type
    Tong, Changqing
    Lin, Zhengyan
    Zheng, Jing
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1229 - 1234
  • [45] Hermite Ornstein-Uhlenbeck processes mixed with a Gamma distribution
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Tudor, Ciprian A.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 96 (1-2): : 23 - 44
  • [46] Central Limit Theorems for Super Ornstein-Uhlenbeck Processes
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) : 9 - 49
  • [47] Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes
    Taufer, Emanuele
    Leonenko, Nikolai
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3050 - 3063
  • [48] Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Loève expansions
    Choi, Jaehyuk
    OPERATIONS RESEARCH LETTERS, 2025, 60
  • [49] Mean first exit times of Ornstein-Uhlenbeck processes in high-dimensional spaces
    Kersting, Hans
    Orvieto, Antonio
    Proske, Frank
    Lucchi, Aurelien
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (21)
  • [50] The class of distributions of periodic Ornstein-Uhlenbeck processes driven by Levy processes
    Pedersen, J
    Sato, KI
    JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (01) : 209 - 235