Exact pathwise simulation of multi-dimensional Ornstein-Uhlenbeck processes

被引:1
|
作者
de la Cruz, H. [1 ]
Jimenez, J. C. [2 ]
机构
[1] Fundacao Getulio Vargas, Sch Appl Math, Rio De Janeiro, Brazil
[2] Inst Cibernet Matemat & Fis, Havana, Cuba
关键词
Ornstein-Uhlenbeck process; Pathwise simulation; Exact simulation; Stochastic differential equations; DIFFERENTIAL-EQUATIONS; DRIVEN; MODEL;
D O I
10.1016/j.amc.2019.124734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exact pathwise simulation of multidimensional Ornstein-Uhlenbeck processes is considered. We propose two procedures that allow the exact pathwise simulation of this type of processes and, simultaneously, the generation of the underlying Wiener trajectories from the same source of randomness. This is particularly important when both processes are system-components in larger stochastic models, for which the study of pathwise dynamics is required. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Skew Ornstein-Uhlenbeck processes and their financial applications
    Wang, Suxin
    Song, Shiyu
    Wang, Yongjin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 363 - 382
  • [22] On the spectral density of fractional Ornstein-Uhlenbeck processes
    Shi, Shuping
    Yu, Jun
    Zhang, Chen
    JOURNAL OF ECONOMETRICS, 2024, 245 (1-2)
  • [23] Quickest Detection Problems for Ornstein-Uhlenbeck Processes
    Glover, Kristoffer
    Peskir, Goran
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (02) : 1045 - 1064
  • [24] Ornstein-Uhlenbeck Processes Driven by Cylindrical Levy Processes
    Riedle, Markus
    POTENTIAL ANALYSIS, 2015, 42 (04) : 809 - 838
  • [25] MARKOV-MODULATED ORNSTEIN-UHLENBECK PROCESSES
    Huang, G.
    Jansen, H. M.
    Mandjes, M.
    Spreij, P.
    De Turck, K.
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (01) : 235 - 254
  • [26] Exact asymptotic bias for estimators of the Ornstein-Uhlenbeck process
    Bosq D.
    Statistical Inference for Stochastic Processes, 2010, 13 (2) : 133 - 145
  • [27] Statistical inference for generalized Ornstein-Uhlenbeck processes
    Belomestny, Denis
    Panov, Vladimir
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 1974 - 2006
  • [28] PRECISE LARGE DEVIATIONS FOR ORNSTEIN-UHLENBECK PROCESSES
    Yang, Xiangfeng
    KODAI MATHEMATICAL JOURNAL, 2013, 36 (03) : 527 - 535
  • [29] Exact solutions and asymptotic behaviors for the reflected Wiener, Ornstein-Uhlenbeck and Feller diffusion processes
    Giorno, Virginia
    Nobile, Amelia G.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 13602 - 13637
  • [30] The unusual properties of aggregated superpositions of Ornstein-Uhlenbeck type processes
    Grahovac, Danijel
    Leonenko, Nikolai N.
    Sikorskii, Alla
    Taqqu, Murad S.
    BERNOULLI, 2019, 25 (03) : 2029 - 2050