Single Image Super-Resolution Using ConvNeXt

被引:3
作者
You, Chenghui [1 ]
Hong, Chaoqun [1 ]
Liu, Lijuan [1 ]
Lin, Xuehan [1 ]
机构
[1] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP) | 2022年
基金
中国国家自然科学基金;
关键词
single image super-resolution; convolutional neural network; deep separable convolution;
D O I
10.1109/VCIP56404.2022.10008798
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, a lot of deep convolution neural networks have been successfully applied in single image super-resolution (SISR). Even in the case of using small convolution kernel, those methods still require large number of parameters and computation. To tackle the problem above, we propose a novel framework to extract features more efficiently. Inspired by the idea of deep separable convolution, we improve the standard residual block and propose the inverted bottleneck block (IBNB). The IBNB replaces the small-sized convolution kernel with the large-sized convolution kernel without introducing additional computation. The proposed IBNB proves that large kernel size convolution is available for SISR. Comprehensive experiments demonstrate that our method surpasses most methods by up to 0.10 similar to 0.32dB in quantitative metrics with fewer parameters.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Improved edge-guided network for single image super-resolution
    Zhao, Jie
    Chen, Zhenxue
    Wu, Q. M. Jonathan
    Li, Xianming
    Cai, Lei
    Zhu, Kai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (01) : 343 - 365
  • [32] Multipath feedforward network for single image super-resolution
    Mingyu Shen
    Pengfei Yu
    Ronggui Wang
    Juan Yang
    Lixia Xue
    Min Hu
    Multimedia Tools and Applications, 2019, 78 : 19621 - 19640
  • [33] Single image super-resolution by approximated Heaviside functions
    Deng, Liang-Jian
    Guo, Weihong
    Huang, Ting-Zhu
    INFORMATION SCIENCES, 2016, 348 : 107 - 123
  • [34] Improved edge-guided network for single image super-resolution
    Jie Zhao
    Zhenxue Chen
    Q. M. Jonathan Wu
    Xianming Li
    Lei Cai
    Kai Zhu
    Multimedia Tools and Applications, 2022, 81 : 343 - 365
  • [35] Multipath feedforward network for single image super-resolution
    Shen, Mingyu
    Yu, Pengfei
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    Hu, Min
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (14) : 19621 - 19640
  • [36] A Hybrid Single Image Super-Resolution Technique Using Fractal Interpolation and Convolutional Neural Network
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (01) : 18 - 23
  • [38] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 11 - 32
  • [39] A compendious study of super-resolution techniques by single image
    Pandey, Garima
    Ghanekar, Umesh
    OPTIK, 2018, 166 : 147 - 160
  • [40] SINGLE HYPERSPECTRAL IMAGE SUPER-RESOLUTION USING ADMM-ADAM THEORY
    Lin, Tzu-Hsuan
    Lin, Chia-Hsiang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1756 - 1759