Single Image Super-Resolution Using ConvNeXt

被引:3
|
作者
You, Chenghui [1 ]
Hong, Chaoqun [1 ]
Liu, Lijuan [1 ]
Lin, Xuehan [1 ]
机构
[1] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP) | 2022年
基金
中国国家自然科学基金;
关键词
single image super-resolution; convolutional neural network; deep separable convolution;
D O I
10.1109/VCIP56404.2022.10008798
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, a lot of deep convolution neural networks have been successfully applied in single image super-resolution (SISR). Even in the case of using small convolution kernel, those methods still require large number of parameters and computation. To tackle the problem above, we propose a novel framework to extract features more efficiently. Inspired by the idea of deep separable convolution, we improve the standard residual block and propose the inverted bottleneck block (IBNB). The IBNB replaces the small-sized convolution kernel with the large-sized convolution kernel without introducing additional computation. The proposed IBNB proves that large kernel size convolution is available for SISR. Comprehensive experiments demonstrate that our method surpasses most methods by up to 0.10 similar to 0.32dB in quantitative metrics with fewer parameters.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Lightweight Image Super-Resolution with ConvNeXt Residual Network
    Zhang, Yong
    Bai, Haomou
    Bing, Yaxing
    Liang, Xiao
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 9545 - 9561
  • [2] Lightweight Image Super-Resolution with ConvNeXt Residual Network
    Yong Zhang
    Haomou Bai
    Yaxing Bing
    Xiao Liang
    Neural Processing Letters, 2023, 55 : 9545 - 9561
  • [3] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,
  • [4] Guided Dual Networks for Single Image Super-Resolution
    Chen, Wenhui
    Liu, Chuangchuang
    Yan, Yitong
    Jin, Longcun
    Sun, Xianfang
    Peng, Xinyi
    IEEE ACCESS, 2020, 8 : 93608 - 93620
  • [5] Upsampling Attention Network for Single Image Super-resolution
    Zheng, Zhijie
    Jiao, Yuhang
    Fang, Guangyou
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 399 - 406
  • [6] Symmetrical Residual Connections for Single Image Super-Resolution
    Li, Xianguo
    Sun, Yemei
    Yang, Yanli
    Miao, Changyun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2019, 15 (01)
  • [7] Single Image Super-Resolution Using Fast Sensing Block
    Lu, Weichen
    Qing, Anyong
    Lee, Ching Kwang
    PROCEEDINGS OF 2019 THE 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY (ICCSP 2019) WITH WORKSHOP 2019 THE 4TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2019), 2019, : 256 - 260
  • [8] Single Image Super-Resolution Using Frequency - Dependent Convolutional Neural Networks
    Baek, Sangwook
    Lee, Chulhee
    2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2020, : 692 - 695
  • [9] Noise robust single image super-resolution using a multiscale image pyramid
    Hu, Jing
    Wu, Xi
    Zhou, Jiliu
    SIGNAL PROCESSING, 2018, 148 : 157 - 171
  • [10] NOISE ROBUST SINGLE IMAGE SUPER-RESOLUTION USING A MULTISCALE IMAGE PYRAMID
    Hu, Jing
    Li, Jiaxin
    Wu, Xi
    Zhou, Jiliu
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2526 - 2530