Global agricultural intensification during climate change: a role for genomics

被引:155
作者
Abberton, Michael [1 ]
Batley, Jacqueline [2 ,3 ,4 ]
Bentley, Alison [5 ]
Bryant, John [6 ]
Cai, Hongwei [7 ,8 ]
Cockram, James [5 ]
Costa de Oliveira, Antonio [9 ]
Cseke, Leland J. [10 ]
Dempewolf, Hannes [11 ]
De Pace, Ciro [12 ]
Edwards, David [2 ,3 ]
Gepts, Paul [13 ]
Greenland, Andy [5 ]
Hall, Anthony E. [14 ]
Henry, Robert [15 ]
Hori, Kiyosumi [16 ]
Howe, Glenn Thomas [17 ]
Hughes, Stephen [18 ]
Humphreys, Mike [19 ]
Lightfoot, David [20 ]
Marshall, Athole [19 ]
Mayes, Sean [21 ]
Nguyen, Henry T. [22 ,23 ]
Ogbonnaya, Francis C. [24 ]
Ortiz, Rodomiro [25 ]
Paterson, Andrew H. [26 ]
Tuberosa, Roberto [27 ]
Valliyodan, Babu [22 ,23 ]
Varshney, Rajeev K. [2 ,3 ,28 ]
Yano, Masahiro [29 ]
机构
[1] Int Inst Trop Agr, PMB 5320, Ibadan, Nigeria
[2] Univ Western Australia, Sch Plant Biol, Perth, WA 6009, Australia
[3] Univ Western Australia, Inst Agr, Perth, WA 6009, Australia
[4] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld, Australia
[5] NIAB, John Bingham Lab, Cambridge, England
[6] Univ Exeter, Coll Life & Environm Sci, Biosci, Exeter, Devon, England
[7] Japan Grassland Agr & Forage Seed Assoc, Forage Crop Res Inst, Nasushiobara, Japan
[8] China Agr Univ, Coll Agron & Biotechnol, Dept Plant Genet & Breeding, Beijing 100094, Peoples R China
[9] Univ Fed Pelotas, Eliseu Maciel Sch Agr, Plant Genom & Breeding Ctr, Pelotas, RS, Brazil
[10] Univ Alabama, Dept Biol Sci Huntsville, Huntsville, AL 35899 USA
[11] Global Crop Divers Trust, Bonn, Germany
[12] Univ Tuscia, DAFNE, Viterbo, Italy
[13] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[14] Univ Calif Riverside, Riverside, CA 92521 USA
[15] Univ Queensland, Queensland Alliance Agr & Food Innovat, Brisbane, Qld, Australia
[16] Natl Inst Agrobiol Sci, Tsukuba, Ibaraki, Japan
[17] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA
[18] Univ Exeter, Exeter, Devon, England
[19] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3FG, Ceredigion, Wales
[20] So Illinois Univ, Coll Agr Sci, Carbondale, IL 62901 USA
[21] Crops Future, Biotechnol & Crop Genet, Kuala Lumpur, Malaysia
[22] Univ Missouri, Div Plant Sci, Columbia, MO USA
[23] Univ Missouri, Natl Ctr Soybean Biotechnol, Columbia, MO USA
[24] GRDC, Canberra, ACT, Australia
[25] Swedish Univ Agr Sci, Uppsala, Sweden
[26] Univ Georgia, Plant Genome Mapping Lab, Athens, GA 30602 USA
[27] Univ Bologna, Dept Agr Sci, Bologna, Italy
[28] Int Crops Res Inst Semi Arid Trop, Ctr Excellence Genom, Hyderabad, Andhra Pradesh, India
[29] Natl Agr & Food Res Org NARO, Inst Crop Sci, Tsukuba, Ibaraki, Japan
基金
英国生物技术与生命科学研究理事会;
关键词
climate change; food security; sustainability; GREEN-REVOLUTION; CROP;
D O I
10.1111/pbi.12467
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Agriculture is now facing the perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.
引用
收藏
页码:1095 / 1098
页数:4
相关论文
共 16 条
[1]  
Alston J., 2000, META ANAL RATES RETU
[2]  
Duvick DN, 2005, CONTRIBUTION BREEDIN, P83
[3]   Accessing complex crop genomes with next-generation sequencing [J].
Edwards, David ;
Batley, Jacqueline ;
Snowdon, Rod J. .
THEORETICAL AND APPLIED GENETICS, 2013, 126 (01) :1-11
[4]  
FAO, 2014, FOOD OUTL BIENN REP
[5]  
Fischer R. A., 2009, How to feed the World in 2050. Proceedings of a technical meeting of experts, Rome, Italy, 24-26 June 2009, P1
[6]  
Fischer T, 2014, ACIAR MONOGR SER, V158, P1
[7]   Next-generation education in crop genetics [J].
Fridman, Eyal ;
Zamir, Dani .
CURRENT OPINION IN PLANT BIOLOGY, 2012, 15 (02) :218-223
[8]  
Gepts P., 2004, Plant Breeding Reviews, V24, P1, DOI 10.1002/9780470650288.ch1
[9]  
Hisas S, 2011, FOOD GAP IMPACTS CLI
[10]   Green revolution: the way forward [J].
Khush, GS .
NATURE REVIEWS GENETICS, 2001, 2 (10) :815-822