Self-healing of impact damage in fiber-reinforced composites

被引:23
|
作者
Hart, Kevin R. [1 ,2 ]
Wetzel, Eric D. [3 ]
Sottos, Nancy R. [2 ,4 ]
White, Scott R. [1 ,2 ]
机构
[1] Univ Illinois, Dept Aerosp Engn, 104 S Wright Sr, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, 405 N Mathews Ave, Urbana, IL 61801 USA
[3] US Army, Weap & Mat Res Directorate, Res Lab, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 USA
[4] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA
关键词
Woven composite; Impact; Self-healing; Vascular; COMPRESSION; POLYMERS;
D O I
10.1016/j.compositesb.2019.05.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Healing of impact damage in vascular fiber-reinforced composite beam specimens was explored using a flexure after impact testing protocol. Two-part epoxy and amine based healing agents were delivered to impact-damaged beam specimens using a novel air assisted reagent delivery scheme. The incorporation of microchannels into composite specimens did not alter the flexural stiffness or strength of the composites, however, the post impact flexural strength was reduced, on average, by 25.7%. Flexure testing of healed specimens demonstrated 47% recovery of strength and 83% recovery of moduli when compared to control samples in which no agents were delivered. Optical cross-sectional micrographs reveal that not all damage regions are infiltrated during healing as a result of incomplete damage connectivity. A damage filling efficiency during healing agent infiltration was calculated and was found to positively correlate with recovery of post-impact strength.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Self-healing in single and multiple fiber(s) reinforced polymer composites
    Woldesenbet, E.
    ICEM 14: 14TH INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS, VOL 6, 2010, 6
  • [32] Terahertz (THz) Wave Imaging in Civil Engineering to Assess Self-Healing of Fiber-Reinforced Cementitious Composites (FRCC)
    Nishiwaki, Tomoya
    Shimizu, Koshi
    Tanabe, Tadao
    Gardner, Diane
    Maddalena, Riccardo
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2023, 21 (01) : 58 - 75
  • [33] Autonomous self-healing based on epoxy resin-imidazole chemistry in carbon fiber-reinforced polymer composites
    Bolimowski, P. A.
    Boczkowska, A.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (02)
  • [34] Cracking and autogenous self-healing on the performance of fiber-reinforced MgO-cement composites in seawater and NaCl solutions
    Xue, Caihong
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 326
  • [35] Drop-weight impact and compressive properties of repeatable self-healing carbon fiber reinforced composites
    Wang, Zhen
    Li, Yan
    COMPOSITES PART B-ENGINEERING, 2024, 283
  • [36] A SMART POLYMER COMPOSITE FOR REPEATEDLY SELF-HEALING IMPACT DAMAGE IN FIBER REINFORCED POLYMER (FRP) VESSELS
    Nji, Jones
    Li, Guoqiang
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B, 2012, : 1221 - 1227
  • [37] Self-healing of damage in fibre-reinforced polymer-matrix composites
    Hayes, S. A.
    Zhang, W.
    Branthwaite, M.
    Jones, F. R.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (13) : 381 - 387
  • [38] Repeatable self-healing of thermosetting fiber reinforced polymer composites with thermoplastic healant
    Jony, Bodiuzzaman
    Thapa, Mishal
    Mulani, Sameer B.
    Roy, Samit
    SMART MATERIALS AND STRUCTURES, 2019, 28 (02)
  • [39] Estimation of interface damage of fiber-reinforced composites
    Liu, Xiqiang
    Wei, Peijun
    MECHANICS OF COMPOSITE MATERIALS, 2008, 44 (01) : 37 - 44
  • [40] Self-healing study of impact damage in carbon fiber/epoxy composites based on hybrid polyamide nanofibers
    Huang, Yan
    Gan, Yu
    Luan, Yingchao
    Cai, Haopeng
    Liang, Luzong
    Ren, Xiujun
    POLYMER COMPOSITES, 2024,