Self-healing of impact damage in fiber-reinforced composites

被引:24
作者
Hart, Kevin R. [1 ,2 ]
Wetzel, Eric D. [3 ]
Sottos, Nancy R. [2 ,4 ]
White, Scott R. [1 ,2 ]
机构
[1] Univ Illinois, Dept Aerosp Engn, 104 S Wright Sr, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, 405 N Mathews Ave, Urbana, IL 61801 USA
[3] US Army, Weap & Mat Res Directorate, Res Lab, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 USA
[4] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA
关键词
Woven composite; Impact; Self-healing; Vascular; COMPRESSION; POLYMERS;
D O I
10.1016/j.compositesb.2019.05.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Healing of impact damage in vascular fiber-reinforced composite beam specimens was explored using a flexure after impact testing protocol. Two-part epoxy and amine based healing agents were delivered to impact-damaged beam specimens using a novel air assisted reagent delivery scheme. The incorporation of microchannels into composite specimens did not alter the flexural stiffness or strength of the composites, however, the post impact flexural strength was reduced, on average, by 25.7%. Flexure testing of healed specimens demonstrated 47% recovery of strength and 83% recovery of moduli when compared to control samples in which no agents were delivered. Optical cross-sectional micrographs reveal that not all damage regions are infiltrated during healing as a result of incomplete damage connectivity. A damage filling efficiency during healing agent infiltration was calculated and was found to positively correlate with recovery of post-impact strength.
引用
收藏
页数:8
相关论文
共 19 条
[1]  
American Society for Testing and Materials, 2017, D6272 ASTM
[2]   Characterization of fracture modes in stitched and unstitched cross-ply laminates subjected to low-velocity impact and compression after impact loading [J].
Aymerich, F. ;
Priolo, P. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2008, 35 (07) :591-608
[3]   Self-Healing Polymers and Composites [J].
Blaiszik, B. J. ;
Kramer, S. L. B. ;
Olugebefola, S. C. ;
Moore, J. S. ;
Sottos, N. R. ;
White, S. R. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 40, 2010, 40 :179-211
[4]   A smart repair system for polymer matrix composites [J].
Bleay, SM ;
Loader, CB ;
Hawyes, VJ ;
Humberstone, L ;
Curtis, PT .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2001, 32 (12) :1767-1776
[5]   Enhanced Mixing of Microvascular Self-Healing Reagents Using Segmented Gas-Liquid Flow [J].
Dean, Leon M. ;
Krull, Brett P. ;
Li, Kevin R. ;
Fedonina, Yelizaveta I. ;
White, Scott R. ;
Sottos, Nancy R. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (38) :32659-32667
[6]   Chemical Treatment of Poly(lactic acid) Fibers to Enhance the Rate of Thermal Depolymerization [J].
Dong, Hefei ;
Esser-Kahn, Aaron P. ;
Thakre, Piyush R. ;
Patrick, Jason F. ;
Sottos, Nancy R. ;
White, Scott R. ;
Moore, Jeffrey S. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (02) :503-509
[7]   Three-Dimensional Microvascular Fiber-Reinforced Composites [J].
Esser-Kahn, Aaron P. ;
Thakre, Piyush R. ;
Dong, Hefei ;
Patrick, Jason F. ;
Vlasko-Vlasov, Vitalii K. ;
Sottos, Nancy R. ;
Moore, Jeffrey S. ;
White, Scott R. .
ADVANCED MATERIALS, 2011, 23 (32) :3654-+
[8]   Multidimensional Vascularized Polymers using Degradable Sacrificial Templates [J].
Gergely, Ryan C. R. ;
Pety, Stephen J. ;
Krull, Brett P. ;
Patrick, Jason F. ;
Doan, Thu Q. ;
Coppola, Anthony M. ;
Thakre, Piyush R. ;
Sottos, Nancy R. ;
Moore, Jeffrey S. ;
White, Scott R. .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (07) :1043-1052
[9]   Pressurized vascular systems for self- healing materials [J].
Hamilton, A. R. ;
Sottos, N. R. ;
White, S. R. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (70) :1020-1028
[10]   Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA [J].
Hardis, Ricky ;
Jessop, Julie L. P. ;
Peters, Frank E. ;
Kessler, Michael R. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 49 :100-108