CLEAN: Leveraging spatial autocorrelation in neuroimaging data in clusterwise inference

被引:5
作者
Park, Jun Young [1 ,2 ]
Fiecas, Mark [3 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON M5S, Canada
[2] Univ Toronto, Dept Psychol, Toronto M5S, ON, Canada
[3] Univ Minnesota, Div Biostat, Sch Publ Hlth, Minneapolis, MN 55455 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Cluster inference; Task-fMRI; Group-level activation; Neuroimaging data analysis; Resampling; Spatial autocorrelation modelling; PROCESS MODELS; FMRI; ASSOCIATION; DEPENDENCE; REGRESSION; EXTENT;
D O I
10.1016/j.neuroimage.2022.119192
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
While clusterwise inference is a popular approach in neuroimaging that improves sensitivity, current methods do not account for explicit spatial autocorrelations because most use univariate test statistics to construct cluster extent statistics. Failure to account for such dependencies could result in decreased reproducibility. To address methodological and computational challenges, we propose a new powerful and fast statistical method called CLEAN (Clusterwise inference Leveraging spatial Autocorrelations in Neuroimaging). CLEAN computes multivariate test statistics by modelling brain-wise spatial autocorrelations, constructs cluster-extent test statistics, and applies a refitting-free resampling approach to control false positives. We validate CLEAN using simulations and applications to the Human Connectome Project. This novel method provides a new direction in neuroimaging that paces with advances in high-resolution MRI data which contains a substantial amount of spatial autocorrelation.
引用
收藏
页数:11
相关论文
共 39 条
[21]   Spatio-Spectral Mixed-Effects Model for Functional Magnetic Resonance Imaging Data [J].
Kang, Hakmook ;
Ombao, Hernando ;
Linkletter, Crystal ;
Long, Nicole ;
Badre, David .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (498) :568-577
[22]   The Statistical Analysis of fMRI Data [J].
Lindquist, Martin A. .
STATISTICAL SCIENCE, 2008, 23 (04) :439-464
[23]   LISA improves statistical analysis for fMRI [J].
Lohmann, Gabriele ;
Stelzer, Johannes ;
Lacosse, Eric ;
Kumar, Vinod J. ;
Mueller, Karsten ;
Kuehn, Esther ;
Grodd, Wolfgang ;
Scheffler, Klaus .
NATURE COMMUNICATIONS, 2018, 9
[24]  
MATLAB R., 2021, Statistics and Machine Learning Toolbox
[25]   A Bayesian General Linear Modeling Approach to Cortical Surface fMRI Data Analysis [J].
Mejia, Amanda F. ;
Yue, Yu ;
Bolin, David ;
Lindgren, Finn ;
Lindquist, Martin A. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) :501-520
[26]   Nonparametric permutation tests for functional neuroimaging: A primer with examples [J].
Nichols, TE ;
Holmes, AP .
HUMAN BRAIN MAPPING, 2002, 15 (01) :1-25
[27]   Cluster failure or power failure? Evaluating sensitivity in cluster-level inference [J].
Noble, Stephanie ;
Scheinost, Dustin ;
Constable, R. Todd .
NEUROIMAGE, 2020, 209
[28]   Permutation-based inference for spatially localized signals in longitudinal MRI data [J].
Park, Jun Young ;
Fiecas, Mark .
NEUROIMAGE, 2021, 239
[29]   Adaptive SNP-Set Association Testing in Generalized Linear Mixed Models with Application to Family Studies [J].
Park, Jun Young ;
Wu, Chong ;
Basu, Saonli ;
McGue, Matt ;
Pan, Wei .
BEHAVIOR GENETICS, 2018, 48 (01) :55-66
[30]   ciftiTools: A package for reading, writing, visualizing, and manipulating CIFTI files in R [J].
Pham, Damon D. ;
Muschelli, John ;
Mejia, Amanda F. .
NEUROIMAGE, 2022, 250