CLEAN: Leveraging spatial autocorrelation in neuroimaging data in clusterwise inference

被引:5
作者
Park, Jun Young [1 ,2 ]
Fiecas, Mark [3 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON M5S, Canada
[2] Univ Toronto, Dept Psychol, Toronto M5S, ON, Canada
[3] Univ Minnesota, Div Biostat, Sch Publ Hlth, Minneapolis, MN 55455 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Cluster inference; Task-fMRI; Group-level activation; Neuroimaging data analysis; Resampling; Spatial autocorrelation modelling; PROCESS MODELS; FMRI; ASSOCIATION; DEPENDENCE; REGRESSION; EXTENT;
D O I
10.1016/j.neuroimage.2022.119192
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
While clusterwise inference is a popular approach in neuroimaging that improves sensitivity, current methods do not account for explicit spatial autocorrelations because most use univariate test statistics to construct cluster extent statistics. Failure to account for such dependencies could result in decreased reproducibility. To address methodological and computational challenges, we propose a new powerful and fast statistical method called CLEAN (Clusterwise inference Leveraging spatial Autocorrelations in Neuroimaging). CLEAN computes multivariate test statistics by modelling brain-wise spatial autocorrelations, constructs cluster-extent test statistics, and applies a refitting-free resampling approach to control false positives. We validate CLEAN using simulations and applications to the Human Connectome Project. This novel method provides a new direction in neuroimaging that paces with advances in high-resolution MRI data which contains a substantial amount of spatial autocorrelation.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Function in the human connectome: Task-fMRI and individual differences in behavior [J].
Barch, Deanna M. ;
Burgess, Gregory C. ;
Harms, Michael P. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. ;
Corbetta, Maurizio ;
Glasser, Matthew F. ;
Curtiss, Sandra ;
Dixit, Sachin ;
Feldt, Cindy ;
Nolan, Dan ;
Bryant, Edward ;
Hartley, Tucker ;
Footer, Owen ;
Bjork, James M. ;
Poldrack, Russ ;
Smith, Steve ;
Johansen-Berg, Heidi ;
Snyder, Abraham Z. ;
Van Essen, David C. .
NEUROIMAGE, 2013, 80 :169-189
[2]   Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data [J].
Bernal-Rusiel, Jorge L. ;
Reuter, Martin ;
Greve, Douglas N. ;
Fischl, Bruce ;
Sabuncu, Mert R. .
NEUROIMAGE, 2013, 81 :358-370
[3]   Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging [J].
Brown, D. Andrew ;
Lazar, Nicole A. ;
Datta, Gauri S. ;
Jang, Woncheol ;
McDowell, Jennifer E. .
NEUROIMAGE, 2014, 84 :97-112
[4]   The impact of traditional neuroimaging methods on the spatial localization of cortical areas [J].
Coalson, Timothy S. ;
Van Essen, David C. ;
Glasser, Matthew F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (27) :E6356-E6365
[5]  
Cohen J., 1988, STAT POWER ANAL BEHA
[6]   Equitable Thresholding and Clustering: A Novel Method for Functional Magnetic Resonance Imaging Clustering in AFNI [J].
Cox, Robert W. .
BRAIN CONNECTIVITY, 2019, 9 (07) :529-538
[7]   FMRI Clustering in AFNI: False-Positive Rates Redux [J].
Cox, Robert W. ;
Chen, Gang ;
Glen, Daniel R. ;
Reynolds, Richard C. ;
Taylor, Paul A. .
BRAIN CONNECTIVITY, 2017, 7 (03) :152-171
[8]   The relation between statistical power and inference in fMRI [J].
Cremers, Henk R. ;
Wager, Tor D. ;
Yarkoni, Tal .
PLOS ONE, 2017, 12 (11)
[9]   Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets [J].
Datta, Abhirup ;
Banerjee, Sudipto ;
Finley, Andrew O. ;
Gelfand, Alan E. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) :800-812
[10]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302