Mixed stabilized finite element methods in nonlinear solid mechanics Part I: Formulation

被引:118
|
作者
Cervera, M. [1 ]
Chiumenti, M. [1 ]
Codina, R. [1 ]
机构
[1] Tech Univ Catalonia UPC, Int Ctr Numer Methods Engn CIMNE, Barcelona 08034, Spain
关键词
Mixed finite element interpolations; Stabilization methods; Algebraic sub-grid scales; Orthogonal sub-grid scales; Nonlinear solid mechanics; EXPLICIT DYNAMIC APPLICATIONS; INCOMPRESSIBLE ELASTICITY; ORTHOGONAL SUBSCALES; TETRAHEDRAL ELEMENT; STRAIN METHODS; J2; PLASTICITY; LOCALIZATION; APPROXIMATION; INTERPOLATIONS; TRIANGLES;
D O I
10.1016/j.cma.2010.04.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper exploits the concept of stabilized finite element methods to formulate stable mixed stress/displacement and strain/displacement finite elements for the solution of nonlinear solid mechanics problems The different assumptions and approximations used to derive the methods are exposed The proposed procedure is very general, applicable to 2D and 3D problems Implementation and computational aspects are also discussed, showing that a robust application of the proposed formulation is feasible Numerical examples show that the results obtained compare favorably with those obtained with the corresponding irreducible formulation (C) 2010 Elsevier B V. All rights reserved
引用
收藏
页码:2559 / 2570
页数:12
相关论文
共 50 条
  • [41] The superconvergence of mixed finite element methods for nonlinear hyperbolic equations
    Chen, Yanping
    Huang, Yunqing
    Communications in Nonlinear Science and Numerical Simulation, 1998, 3 (03): : 155 - 158
  • [42] Mixed finite element methods for a strongly nonlinear parabolic problem
    Chen, YP
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1999, 17 (02) : 209 - 220
  • [43] A STABILIZED MIXED FINITE ELEMENT FORMULATION FOR THE NON-STATIONARY INCOMPRESSIBLE BOUSSINESQ EQUATIONS
    Luo, Zhendong
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (02) : 385 - 393
  • [44] Stabilized mixed explicit finite element formulation for compressible and nearly-incompressible solids
    Lafontaine, N.
    Rossi, R.
    Cervera, M.
    Chiumenti, M.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2017, 33 (1-2): : 35 - 44
  • [45] A stabilized mixed finite element method for finite elasticity. Formulation for linear displacement and pressure interpolation
    Klaas, O
    Maniatty, A
    Shephard, MS
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 180 (1-2) : 65 - 79
  • [47] A mixed finite element formulation for elastoplasticity
    Nagler, Michaela
    Pechstein, Astrid
    Humer, Alexander
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (21) : 5346 - 5368
  • [48] Consistent implicit formulation for nonlinear finite element modeling with contact and friction. Part I. Theory
    Saran, M.J.
    Wagoner, R.H.
    Journal of Applied Mechanics, Transactions ASME, 1991, 58 (02): : 499 - 506
  • [49] FINITE-ELEMENT FORMULATION OF THE FINITE ROTATION SOLID ELEMENT
    KOZAR, I
    IBRAHIMBEGOVIC, A
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1995, 20 (02) : 101 - 126
  • [50] Stabilized finite element method for incompressible solid dynamics using an updated Lagrangian formulation
    Nemer, R.
    Larcher, A.
    Coupez, T.
    Hachem, E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384 (384)