On eigenfunction decay for two dimensional magnetic Schrodinger operators

被引:31
作者
Cornean, HD
Nenciu, G
机构
[1] Romanian Acad, Inst Math, Bucharest 70700, Romania
[2] Univ Bucharest, Dept Theor Phys, Bucharest 76900, Romania
关键词
D O I
10.1007/s002200050314
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For two dimensional Schrodinger operators with a nonzero constant magnetic field perturbed by a magnetic field and a scalar potential, both vanishing arbitrarily slow at infinity, it is proved that eigenfunctions corresponding to the discrete spectrum decay faster than any exponential. Under more restrictive conditions on the perturbations, even quicker decay is obtained.
引用
收藏
页码:671 / 685
页数:15
相关论文
共 19 条
  • [1] Abramovitz M., 1965, NBS APPL MATH SERIES, V55
  • [2] [Anonymous], 1994, ADV STUDIES PURE MAT
  • [3] SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS
    AVRON, J
    HERBST, I
    SIMON, B
    [J]. DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) : 847 - 883
  • [4] SEPARATION OF CENTER OF MASS IN HOMOGENEOUS MAGNETIC-FIELDS
    AVRON, JE
    HERBST, IW
    SIMON, B
    [J]. ANNALS OF PHYSICS, 1978, 114 (1-2) : 431 - 451
  • [5] SPECTRAL STABILITY UNDER TUNNELING
    BRIET, P
    COMBES, JM
    DUCLOS, P
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (01) : 133 - 156
  • [6] CYCON H. L, 1987, Schrodinger operators with application to quantum mechanics and global geometry
  • [7] ERDOS L, 1984, 184 ESI
  • [8] FEYNMAN RP, 1965, QUANTUM MECH PATH IN
  • [9] MULTIPLE WELLS IN THE SEMI-CLASSICAL LIMIT I
    HELFFER, B
    SJOSTRAND, J
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (04) : 337 - 408
  • [10] HEMPEL R, 1994, 74 ESI