The Veterans Precision Oncology Data Commons: Transforming VA data into a national resource for research in precision oncology

被引:9
|
作者
Do, Nhan [1 ]
Grossman, Robert [2 ]
Feldman, Theodore [3 ]
Fillmore, Nathanael [3 ]
Elbers, Danne [4 ]
Tuck, David [1 ]
Dhond, Rupali [5 ]
Selva, Luis [1 ]
Meng, Frank [1 ]
Fitzsimons, Michael [2 ]
Ajjarapu, Samuel [6 ]
Ayandeh, Siamack [5 ]
Hall, Robert [5 ]
Do, Stephanie [7 ]
Brophy, Mary [1 ]
机构
[1] Boston Univ, Sch Med, VA Boston Healthcare Syst, 43 Bonad Rd, Boston, MA 02132 USA
[2] Univ Chicago, Chicago, IL 60637 USA
[3] Harvard Med Sch, VA Boston Healthcare Syst, Boston, MA 02115 USA
[4] Univ Vermont, VA Boston Healthcare Syst, Burlington, VT USA
[5] VA Boston Healthcare Syst, Boston, MA USA
[6] Dana Farber Canc Inst, VA Boston Healthcare Syst, Boston, MA 02115 USA
[7] Coll William & Mary, VA Boston Healthcare Syst, Williamsburg, VA USA
基金
美国国家卫生研究院;
关键词
Precision oncology; Data commons; Data sharing; CANCER CARE; AFFAIRS;
D O I
10.1053/j.seminoncol.2019.09.002
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The Department of Veterans Affairs (VA) has a strong track record providing high-quality, evidence-based care to cancer patients. In order to accelerate discoveries that will further improve care for Veterans with cancer, the VA has partnered with the Center for Translational Data Science at the University of Chicago and the Open Commons Consortium to establish a data sharing platform, the Veterans Precision Oncology Data Commons (VPODC). The VPODC makes clinical, genomic, and imaging data from the VA available to the research community at large. In this paper, we detail our motivation for data sharing, describe the VPODC, and outline our collaboration model. By transforming VA data into a national resource for research in precision oncology, the VPODC seeks to foster innovation through collaboration and resource sharing that will ultimately lead to improved care for Veterans with cancer. Published by Elsevier Inc.
引用
收藏
页码:314 / 320
页数:7
相关论文
共 31 条
  • [1] The Veterans Affairs Precision Oncology Data Repository, a Clinical, Genomic, and Imaging Research Database
    Elbers, Danne C.
    Fillmore, Nathanael R.
    Sung, Feng-Chi
    Ganas, Spyridon S.
    Prokhorenkov, Andrew
    Meyer, Christopher
    Hall, Robert B.
    Ajjarapu, Samuel J.
    Chen, Daniel C.
    Meng, Frank
    Grossman, Robert L.
    Brophy, Mary T.
    Do, Nhan, V
    PATTERNS, 2020, 1 (06):
  • [2] Data-Driven Methods for Advancing Precision Oncology
    Nedungadi P.
    Iyer A.
    Gutjahr G.
    Bhaskar J.
    Pillai A.B.
    Current Pharmacology Reports, 2018, 4 (2) : 145 - 156
  • [3] The National Sleep Research Resource: towards a sleep data commons
    Zhang, Guo-Qiang
    Cui, Licong
    Mueller, Remo
    Tao, Shiqiang
    Kim, Matthew
    Rueschman, Michael
    Mariani, Sara
    Mobley, Daniel
    Redline, Susan
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (10) : 1351 - 1358
  • [4] Implementing the FAIR Data Principles in precision oncology: review of supporting initiatives
    Vesteghem, Charles
    Brondum, Rasmus Froberg
    Sonderkaer, Mads
    Sommer, Mia
    Schmitz, Alexander
    Bodker, Julie Stove
    Dybkaer, Karen
    El-Galaly, Tarec Christoffer
    Bogsted, Martin
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (03) : 936 - 945
  • [5] The National Sleep Research Resource: Towards a Sleep Data Commons
    Zhang, Guo-Qiang
    Cui, Licong
    Mueller, Remo
    Tao, Shiqiang
    Kim, Matthew
    Rueschman, Michael
    Mariani, Sara
    Mobley, Daniel
    Redline, Susan
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 572 - 572
  • [6] Defining a Core Data Set for the Economic Evaluation of Precision Oncology
    Pollard, Samantha
    Weymann, Deirdre
    Chan, Brandon
    Ehman, Morgan
    Wordsworth, Sarah
    Buchanan, James
    Hanna, Timothy P.
    Ho, Cheryl
    Lim, Howard J.
    Lorgelly, Paula K.
    Raymakers, Adam J. N.
    McCabe, Christopher
    Regier, Dean A.
    VALUE IN HEALTH, 2022, 25 (08) : 1371 - 1380
  • [7] Precision oncology based on omics data: The NCT Heidelberg experience
    Horak, Peter
    Klink, Barbara
    Heining, Christoph
    Groeschel, Stefan
    Hutter, Barbara
    Froehlich, Martina
    Uhrig, Sebastian
    Huebschmann, Daniel
    Schlesner, Matthias
    Eils, Roland
    Richter, Daniela
    Pfuetze, Katrin
    Geoerg, Christina
    Meissburger, Bettina
    Wolf, Stephan
    Schulz, Angela
    Penzel, Roland
    Herpel, Esther
    Kirchner, Martina
    Lier, Amelie
    Endris, Volker
    Singer, Stephan
    Schirmacher, Peter
    Weichert, Wilko
    Stenzinger, Albrecht
    Schlenk, Richard F.
    Schroeck, Evelin
    Brors, Benedikt
    von Kalle, Christof
    Glimm, Hanno
    Froehling, Stefan
    INTERNATIONAL JOURNAL OF CANCER, 2017, 141 (05) : 877 - 886
  • [8] Artificial intelligence (AI) and big data in cancer and precision oncology
    Dlamini, Zodwa
    Francies, Flavia Zita
    Hull, Rodney
    Marima, Rahaba
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2300 - 2311
  • [9] A Cardio-Oncology Data Commons: Lessons from Pediatric Oncology
    Anant Mandawat
    Logan Eberly
    William Border
    Current Cardiology Reports, 2019, 21
  • [10] A Cardio-Oncology Data Commons: Lessons from Pediatric Oncology
    Mandawat, Anant
    Eberly, Logan
    Border, William
    CURRENT CARDIOLOGY REPORTS, 2019, 21 (10)