Design of auxiliary model and hierarchical normalized fractional adaptive algorithms for parameter estimation of bilinear-in-parameter systems

被引:1
|
作者
Zhu, Yancheng [1 ,2 ,3 ]
Wu, Huaiyu [1 ,3 ]
Chen, Zhihuan [1 ,3 ]
Chen, Yang [1 ,3 ]
Zheng, Xiujuan [1 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Engn Res Ctr Met Automat & Measurement Technol, Minist Educ, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan, Peoples R China
[3] Wuhan Univ Sci & Technol, Inst Robot & Intelligent Syst, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
auxiliary model; bilinear-in-parameter system; fractional adaptive algorithms; hierarchical identification; parameter estimation; LMS ALGORITHM; ORDER; IDENTIFICATION; STRATEGY; NOISE;
D O I
10.1002/acs.3471
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the parameter identification issues of bilinear-in-parameter systems through fractional adaptive algorithms. An auxiliary model based epsilon-normalized$$ \varepsilon \hbox{-} \mathrm{normalized} $$ modified fractional least mean square algorithm is proposed for accelerating the parameter estimation accuracy based on the auxiliary model identification idea and the introduced convergence index, a normalized modified hierarchical fractional least mean square algorithm is presented for improving the computational efficiency based on the hierarchical identification principle. The proposed normalized fractional adaptive strategies are effective and could provide more accurate parameter estimates comparing with conventional counterparts for bilinear-in-parameter identification model based on the mean square error metrics and the average predicted output error. The effectiveness and accuracy of the proposed algorithms are further verified and validated through numerical simulations for different noise variances, fractional orders and gain parameters.
引用
收藏
页码:2562 / 2584
页数:23
相关论文
共 50 条
  • [31] Parameter estimation for multirate multi-input systems using auxiliary model and multi-innovation
    Han, Lili
    Ding, Feng
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (06) : 1079 - 1083
  • [32] Combined parameter and output estimation of dual-rate systems using an auxiliary model
    Ding, F
    Chen, TW
    AUTOMATICA, 2004, 40 (10) : 1739 - 1748
  • [33] Hierarchical Quasi-Fractional Gradient Descent Method for Parameter Estimation of Nonlinear ARX Systems Using Key Term Separation Principle
    Chaudhary, Naveed Ishtiaq
    Raja, Muhammad Asif Zahoor
    Khan, Zeshan Aslam
    Cheema, Khalid Mehmood
    Milyani, Ahmad H.
    MATHEMATICS, 2021, 9 (24)
  • [34] Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems
    Xu, Ling
    Ding, Feng
    Yang, Erfu
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (01) : 148 - 165
  • [35] Recursive algorithms for parameter estimation with adaptive quantizer
    You, Keyou
    AUTOMATICA, 2015, 52 : 192 - 201
  • [36] Maximum-likelihood parameter estimation of bilinear systems
    Gibson, S
    Wills, A
    Ninness, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1581 - 1596
  • [37] State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle
    Zhang, Xiao
    Ding, Feng
    Xu, Ling
    Yang, Erfu
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12) : 1704 - 1713
  • [38] Hierarchical Stochastic Gradient Parameter Estimation Algorithms for Multivariable Systems with Colored Noises
    Ding, Feng
    Liu, Yanjun
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 3830 - 3835
  • [39] Recursive Set-Membership Parameter Estimation Using Fractional Model
    Amairi, M.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2015, 34 (12) : 3757 - 3788
  • [40] Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems
    Chaudhary, Naveed Ishtiaq
    Khan, Zeshan Aslam
    Kiani, Adiqa Kausar
    Raja, Muhammad Asif Zahoor
    Chaudhary, Iqra Ishtiaq
    Pinto, Carla M. A.
    CHAOS SOLITONS & FRACTALS, 2022, 163