Design of auxiliary model and hierarchical normalized fractional adaptive algorithms for parameter estimation of bilinear-in-parameter systems

被引:1
|
作者
Zhu, Yancheng [1 ,2 ,3 ]
Wu, Huaiyu [1 ,3 ]
Chen, Zhihuan [1 ,3 ]
Chen, Yang [1 ,3 ]
Zheng, Xiujuan [1 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Engn Res Ctr Met Automat & Measurement Technol, Minist Educ, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan, Peoples R China
[3] Wuhan Univ Sci & Technol, Inst Robot & Intelligent Syst, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
auxiliary model; bilinear-in-parameter system; fractional adaptive algorithms; hierarchical identification; parameter estimation; LMS ALGORITHM; ORDER; IDENTIFICATION; STRATEGY; NOISE;
D O I
10.1002/acs.3471
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the parameter identification issues of bilinear-in-parameter systems through fractional adaptive algorithms. An auxiliary model based epsilon-normalized$$ \varepsilon \hbox{-} \mathrm{normalized} $$ modified fractional least mean square algorithm is proposed for accelerating the parameter estimation accuracy based on the auxiliary model identification idea and the introduced convergence index, a normalized modified hierarchical fractional least mean square algorithm is presented for improving the computational efficiency based on the hierarchical identification principle. The proposed normalized fractional adaptive strategies are effective and could provide more accurate parameter estimates comparing with conventional counterparts for bilinear-in-parameter identification model based on the mean square error metrics and the average predicted output error. The effectiveness and accuracy of the proposed algorithms are further verified and validated through numerical simulations for different noise variances, fractional orders and gain parameters.
引用
收藏
页码:2562 / 2584
页数:23
相关论文
共 50 条
  • [1] Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems
    Chaudhary, Naveed Ishtiaq
    Ahmed, Mateen
    Khan, Zeeshan Aslam
    Zubair, Syed
    Raja, Muhammad Asif Zahoor
    Dedovic, Nebojsa
    APPLIED MATHEMATICAL MODELLING, 2018, 55 : 698 - 715
  • [2] Gradient-based iterative parameter estimation for bilinear-in-parameter systems using the model decomposition technique
    Chen, Mengting
    Ding, Feng
    Yang, Erfu
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (17) : 2380 - 2389
  • [3] Design of multi-innovation hierarchical fractional adaptive algorithm for generalized bilinear-in-parameter system using the key term separation principle
    Zhu, Yancheng
    Wu, Huaiyu
    Chen, Zhihuan
    Zhu, Zhenhua
    Chen, Yang
    Zheng, Xiujuan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems
    Ding, Feng
    Wang, Xuehai
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (04) : 1393 - 1405
  • [5] Iterative Identification Algorithms for Bilinear-in-parameter Systems by Using the Over-parameterization Model and the Decomposition
    Chen, Mengting
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2018, 16 (06) : 2634 - 2643
  • [6] Hierarchical parameter and state estimation for bilinear systems
    Zhang, Xiao
    Ding, Feng
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (02) : 275 - 290
  • [7] Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model
    Ding, Feng
    Xu, Ling
    Meng, Dandan
    Jin, Xue-Bo
    Alsaedi, Ahmed
    Hayat, Tasawar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [8] Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems
    Feng Ding
    Xuehai Wang
    Circuits, Systems, and Signal Processing, 2017, 36 : 1393 - 1405
  • [9] Hierarchical maximum likelihood generalized extended stochastic gradient algorithms for bilinear-in-parameter systems
    Liu, Haibo
    Wang, Junwei
    Meng, Xiangxiang
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2022, 43 (02) : 402 - 417
  • [10] A modified model decomposition identification for bilinear-in-parameter systems
    Chen, Huibo
    Fan, Jiangbo
    Li, Jing
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (3-4) : 258 - 263