Concavity and efficient points of discrete distributions in probabilistic programming

被引:136
|
作者
Dentcheva, D [1 ]
Prékopa, A
Ruszczynski, A
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[2] RUTCOR, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Dept Management Sci & Informat Syst, Piscataway, NJ 08854 USA
关键词
probabilistic programming; discrete distributions; generalized concavity; column generation;
D O I
10.1007/PL00011393
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider stochastic programming problems with probabilistic constraints involving integer-valued random variables. The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations. Next we introduce the concept of r-concave discrete probability distributions and analyse its relevance for problems under consideration. These notions are used to derive lower and upper bounds for the optimal Value of probabilistically constrained stochastic programming problems with discrete random variables. The results are illustrated with numerical examples.
引用
收藏
页码:55 / 77
页数:23
相关论文
共 50 条
  • [31] Probabilistic programming for assessment of capability and capacity
    Pfeffer, Avi P.
    Harrison, Scott A.
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XX, 2011, 8050
  • [32] Probabilistic programming: A review for environmental modellers
    Krapu, Christopher
    Borsuk, Mark
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 114 : 40 - 48
  • [33] HackPPL: A Universal Probabilistic Programming Language
    Ai, Jessica
    Arora, Nimar S.
    Dong, Ning
    Gokkaya, Beliz
    Jiang, Thomas
    Kubendran, Anitha
    Kumar, Arun
    Tingley, Michael
    Torabi, Narjes
    PROCEEDINGS OF THE 3RD ACM SIGPLAN INTERNATIONAL WORKSHOP ON MACHINE LEARNING AND PROGRAMMING LANGUAGES (MAPL '19), 2019, : 20 - 28
  • [34] A history of Probabilistic Inductive Logic Programming
    Riguzzi, Fabrizio
    Bellodi, Elena
    Zese, Riccardo
    FRONTIERS IN ROBOTICS AND AI, 2014,
  • [35] Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming
    Baudart, Guillaume
    Burroni, Javier
    Hirzel, Martin
    Mandel, Louis
    Shinnar, Avraham
    PROCEEDINGS OF THE 42ND ACM SIGPLAN INTERNATIONAL CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '21), 2021, : 497 - 510
  • [36] Testing Shape Restrictions of Discrete Distributions
    Canonne, Clement L.
    Diakonikolas, Ilias
    Gouleakis, Themis
    Rubinfeld, Ronitt
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (01) : 4 - 62
  • [37] On a General Class of Discrete Bivariate Distributions
    Debasis Kundu
    Sankhya B, 2020, 82 : 270 - 304
  • [38] Testing Shape Restrictions of Discrete Distributions
    Clément L. Canonne
    Ilias Diakonikolas
    Themis Gouleakis
    Ronitt Rubinfeld
    Theory of Computing Systems, 2018, 62 : 4 - 62
  • [39] lp Testing and Learning of Discrete Distributions
    Waggoner, Bo
    PROCEEDINGS OF THE 6TH INNOVATIONS IN THEORETICAL COMPUTER SCIENCE (ITCS'15), 2015, : 346 - 355
  • [40] Probabilistic programming for nitrate pollution control: Comparing different probabilistic constraint approximations
    Kampas, A
    White, B
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 147 (01) : 217 - 228