Concavity and efficient points of discrete distributions in probabilistic programming

被引:136
|
作者
Dentcheva, D [1 ]
Prékopa, A
Ruszczynski, A
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[2] RUTCOR, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Dept Management Sci & Informat Syst, Piscataway, NJ 08854 USA
关键词
probabilistic programming; discrete distributions; generalized concavity; column generation;
D O I
10.1007/PL00011393
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider stochastic programming problems with probabilistic constraints involving integer-valued random variables. The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations. Next we introduce the concept of r-concave discrete probability distributions and analyse its relevance for problems under consideration. These notions are used to derive lower and upper bounds for the optimal Value of probabilistically constrained stochastic programming problems with discrete random variables. The results are illustrated with numerical examples.
引用
收藏
页码:55 / 77
页数:23
相关论文
共 50 条
  • [21] Probabilistic Programming with Stochastic Probabilities
    Lew, Alexander K.
    Ghavamizadeh, Matin
    Rinard, Martin C.
    Mansinghka, Vikash K.
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2023, 7 (PLDI):
  • [22] Declarative Probabilistic Programming with Datalog
    Barany, Vince
    Ten Cate, Balder
    Kimelfeld, Benny
    Olteanu, Dan
    Vagena, Zografoula
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2017, 42 (04):
  • [23] Classes of discrete lifetime distributions
    Kemp, AW
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (11-12) : 3069 - 3093
  • [24] A generalization of the classical discrete distributions
    Minkova, LD
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (06) : 871 - 888
  • [25] Pyro: Deep Universal Probabilistic Programming
    Bingham, Eli
    Chen, Jonathan P.
    Jankowiak, Martin
    Obermeyer, Fritz
    Pradhan, Neeraj
    Karaletsos, Theofanis
    Singh, Rohit
    Szerlip, Paul
    Horsfall, Paul
    Goodman, Noah D.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [26] The Joy of Probabilistic Answer Set Programming
    Cozman, Fabio Gagliardi
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 91 - 101
  • [27] Fabular: Regression Formulas as Probabilistic Programming
    Borgstrom, Johannes
    Gordon, Andrew D.
    Ouyang, Long
    Russo, Claudio
    Scibior, Adam
    Szymczak, Marcin
    ACM SIGPLAN NOTICES, 2016, 51 (01) : 271 - 283
  • [28] Bounds for probabilistic integer programming problems
    Dentcheva, D
    Prékopa, A
    Ruszczynski, A
    DISCRETE APPLIED MATHEMATICS, 2002, 124 (1-3) : 55 - 65
  • [29] Probabilistic Programming with Programmable Variational Inference
    Becker, Mccoy R.
    Lew, Alexander K.
    Wang, Xiaoyan
    Ghavami, Matin
    Huot, Mathieu
    Rinard, Martin C.
    Mansinghka, Vikash K.
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2024, 8 (PLDI):
  • [30] Probabilistic Programming Semantics for Name Generation
    Sabok, Marcin
    Staton, Sam
    Stein, Dario
    Wolman, Michael
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2021, 5