Concavity and efficient points of discrete distributions in probabilistic programming

被引:136
|
作者
Dentcheva, D [1 ]
Prékopa, A
Ruszczynski, A
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[2] RUTCOR, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Dept Management Sci & Informat Syst, Piscataway, NJ 08854 USA
关键词
probabilistic programming; discrete distributions; generalized concavity; column generation;
D O I
10.1007/PL00011393
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider stochastic programming problems with probabilistic constraints involving integer-valued random variables. The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations. Next we introduce the concept of r-concave discrete probability distributions and analyse its relevance for problems under consideration. These notions are used to derive lower and upper bounds for the optimal Value of probabilistically constrained stochastic programming problems with discrete random variables. The results are illustrated with numerical examples.
引用
收藏
页码:55 / 77
页数:23
相关论文
共 50 条
  • [1] On convex probabilistic programming with discrete distributions
    Dentcheva, D
    Prékopa, A
    Ruszczynski, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (03) : 1997 - 2009
  • [2] Programming discrete distributions with chemical reaction networks
    Cardelli, Luca
    Kwiatkowska, Marta
    Laurenti, Luca
    NATURAL COMPUTING, 2018, 17 (01) : 131 - 145
  • [3] Programming discrete distributions with chemical reaction networks
    Luca Cardelli
    Marta Kwiatkowska
    Luca Laurenti
    Natural Computing, 2018, 17 : 131 - 145
  • [4] Declarative probabilistic logic programming in discrete-continuous domains
    Dos Martires, Pedro Zuidberg
    De Raedt, Luc
    Kimmig, Angelika
    ARTIFICIAL INTELLIGENCE, 2024, 337
  • [5] Probabilistic Programming with Densities in SlicStan: Efficient, Flexible, and Deterministic
    Gorinova, Maria, I
    Gordon, Andrew D.
    Sutton, Charles
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2019, 3 (POPL):
  • [6] Semi-symbolic Inference for Efficient Streaming Probabilistic Programming
    Atkinson, Eric
    Yuan, Charles
    Baudart, Guillaume
    Mandel, Louis
    Carbin, Michael
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2022, 6 (OOPSLA):
  • [7] Regular type distributions in mechanism design and ρ-concavity
    Ewerhart, Christian
    ECONOMIC THEORY, 2013, 53 (03) : 591 - 603
  • [8] Bean Machine: A Declarative Probabilistic Programming Language For Efficient Programmable Inference
    Tehrani, Nazanin
    Arora, Nimar S.
    Li, Yucen Lily
    Shah, Kinjal Divesh
    Noursi, David
    Tingley, Michael
    Torabi, Narjes
    Masouleh, Sepehr
    Lippert, Eric
    Meijer, Erik
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 485 - 496
  • [9] Probabilistic optimization via approximate p-efficient points and bundle methods
    van Ackooij, W.
    Berge, V.
    de Oliveira, W.
    Sagastizabal, C.
    COMPUTERS & OPERATIONS RESEARCH, 2017, 77 : 177 - 193
  • [10] Deployable Probabilistic Programming
    Tolpin, David
    PROCEEDINGS OF THE 2019 ACM SIGPLAN INTERNATIONAL SYMPOSIUM ON NEW IDEAS, NEW PARADIGMS, AND REFLECTIONS ON PROGRAMMING AND SOFTWARE (ONWARD!' 19), 2019, : 1 - 16