A multiplicity result for a (p, q)-Schrodinger-Kirchhoff type equation

被引:21
作者
Ambrosio, Vincenzo [1 ]
Isernia, Teresa [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
(p; q)-Laplacian problem; Penalization technique; Lusternik-Schnirelman category theory; KIRCHHOFF-TYPE PROBLEM; POSITIVE BOUND-STATES; Q-LAPLACIAN PROBLEM; ELLIPTIC PROBLEMS; SCHRODINGER-EQUATION; NONTRIVIAL SOLUTIONS; SUPERLINEAR (P; R-N; EXISTENCE; REGULARITY;
D O I
10.1007/s10231-021-01145-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of (p, q)-Schrodinger-Kirchhoff type equations involving a continuous positive potential satisfying del Pino-Felmer type conditions and a continuous nonlinearity with subcritical growth at infinity. By applying variational methods, penalization techniques and Lusternik-Schnirelman category theory, we relate the number of positive solutions with the topology of the set where the potential attains its minimum values.
引用
收藏
页码:943 / 984
页数:42
相关论文
共 52 条
[1]  
Adams RA, 1975, SOBOLEV SPACES PURE
[2]   Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space [J].
Alves, Claudianor O. ;
da Silva, Ailton R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (11)
[3]  
Alves CO, 2011, ADV NONLINEAR STUD, V11, P265
[4]   On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1288-1311
[5]  
Alves CO, 2005, ADV NONLINEAR STUD, V5, P551
[6]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[7]  
Ambrosio V, 2021, Z ANGEW MATH PHYS, V72, DOI 10.1007/s00033-020-01466-7
[8]  
[Anonymous], 2004, Commun. Pure Appl. Anal
[9]   On a class of superlinear (p, q)-Laplacian type equations on RN [J].
Bartolo, R. ;
Candela, A. M. ;
Salvatore, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (01) :29-41
[10]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48