Perspectives on the formation of peakons in the stochastic Camassa-Holm equation

被引:7
作者
Bendall, Thomas M. [1 ,2 ]
Cotter, Colin J. [2 ]
Holm, Darryl D. [2 ]
机构
[1] Dynam Res, Met Off, Exeter, Devon, England
[2] Imperial Coll, Math Dept, London, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 477卷 / 2250期
基金
英国工程与自然科学研究理事会;
关键词
stochastic partial differential equation; nonlinear waves; finite-element discretization; GLOBAL CONSERVATIVE SOLUTIONS; DISCONTINUOUS GALERKIN METHOD; SHALLOW-WATER EQUATION; FINITE-ELEMENT METHODS; WAVE BREAKING; TRANSPORT; SCHEME;
D O I
10.1098/rspa.2021.0224
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A famous feature of the Camassa-Holm equation is its admission of peaked soliton solutions known as peakons. We investigate this equation under the influence of stochastic transport. Noting that peakons are weak solutions of the equation, we present a finite-element discretization for it, which we use to explore the formation of peakons. Our simulations using this discretization reveal that peakons can still form in the presence of stochastic perturbations. Peakons can emerge both through wave breaking, as the slope turns vertical, and without wave breaking as the inflection points of the velocity profile rise to reach the summit.
引用
收藏
页数:18
相关论文
共 43 条
  • [1] HIGH WEAK ORDER METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS BASED ON MODIFIED EQUATIONS
    Abdulle, Assyr
    Cohen, David
    Vilmart, Gilles
    Zygalakis, Konstantinos C.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03) : A1800 - A1823
  • [2] The Burgers' equation with stochastic transport: shock formation, local and global existence of smooth solutions
    Alonso-Oran, Diego
    de Leon, Aythami Bethencourt
    Takao, So
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06):
  • [3] [Anonymous], 2010, STOCHASTIC PROCESSES
  • [4] Error estimates for Galerkin finite element methods for the Camassa-Holm equation
    Antonopoulos, D. C.
    Dougalis, V. A.
    Mitsotakis, D. E.
    [J]. NUMERISCHE MATHEMATIK, 2019, 142 (04) : 833 - 862
  • [5] Numerical simulation of Camassa-Holm peakons by adaptive upwinding
    Artebrant, R
    Schroll, HJ
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (05) : 695 - 711
  • [6] Statistical properties of an enstrophy conserving finite element discretisation for the stochastic quasi-geostrophic equation
    Bendall, Thomas M.
    Cotter, Colin J.
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2019, 113 (5-6) : 491 - 504
  • [7] THE STOCHASTIC BURGERS-EQUATION
    BERTINI, L
    CANCRINI, N
    JONALASINIO, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) : 211 - 232
  • [8] Global conservative solutions of the Camassa-Holm equation
    Bressan, Alberto
    Constantin, Adrian
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) : 215 - 239
  • [9] AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS
    CAMASSA, R
    HOLM, DD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1661 - 1664
  • [10] Well-posedness for stochastic Camassa-Holm equation
    Chen, Yong
    Gao, Hongjun
    Guo, Boling
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) : 2353 - 2379