Experimental methods in chemical engineering: Density functional theory

被引:34
作者
Al-Mahayni, Hasan [1 ]
Wang, Xiao [1 ]
Harvey, Jean-Philippe [2 ]
Patience, Gregory S. [3 ]
Seifitokaldani, Ali [1 ]
机构
[1] McGill Univ, Chem Engn, 845 Sherbrooke St W, Montreal, PQ H3A 0G4, Canada
[2] Polytech Montreal, Chem Engn, CRCT, Montreal, PQ, Canada
[3] Polytech Montreal, Chem Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
computations; DFT; energetics of chemical systems; material properties; surface energy; INITIO MOLECULAR-DYNAMICS; EQUATION-OF-STATE; THERMAL-CONDUCTIVITY; ELECTRONIC-STRUCTURE; GLOBAL OPTIMIZATION; DEBYE TEMPERATURE; OXYGEN REDUCTION; YIELD STRENGTH; POINT-DEFECTS; SURFACE-AREA;
D O I
10.1002/cjce.24127
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Density functional theory (DFT) computations apply to physics, chemistry, material science, and engineering. In chemical engineering, DFT identifies material structure and properties, and mechanisms for phenomena such as chemical reaction and phase transformation that are otherwise impossible to measure experimentally. Even though its practical application dates back only a decade or two, it is already a standard tool for materials modelling. Many textbooks and articles describe the theoretical basis of DFT, but it remains difficult for researchers to autonomously learn the steps to accurately calculate system properties. Here, we first explain the foundations of DFT in a way accessible to chemical engineers with little background in quantum mechanics or solid-state physics. Then, we introduce the basics of the computations and, for most of the rest of the article, we show how to derive physical characteristics of interest to chemical engineers: elastic, thermodynamic, and surface properties, electronic structure, and surface and chemical reaction energy. Finally, we highlight some limitations of DFT; since these calculations are approximations to the Schrodinger equation, their accuracy relies on choosing adequate exchange-correlation functions and basis sets. Since 1991, the number of articles WoS has indexed related to DFT has increased quadratically with respect to time and now numbers 15 000. A bibliometric analysis of the top 10 000 cited articles in 2018 and 2019 classifies them into four clusters: adsorption, graphene, and nanoparticles; ab initio molecular dynamics and crystal structure; electronic structure and optical properties; and total energy calculations and wave basis sets.
引用
收藏
页码:1885 / 1911
页数:27
相关论文
共 145 条
[41]   ABINIT: First-principles approach to material and nanosystem properties [J].
Gonze, X. ;
Amadon, B. ;
Anglade, P. -M. ;
Beuken, J. -M. ;
Bottin, F. ;
Boulanger, P. ;
Bruneval, F. ;
Caliste, D. ;
Caracas, R. ;
Cote, M. ;
Deutsch, T. ;
Genovese, L. ;
Ghosez, Ph. ;
Giantomassi, M. ;
Goedecker, S. ;
Hamann, D. R. ;
Hermet, P. ;
Jollet, F. ;
Jomard, G. ;
Leroux, S. ;
Mancini, M. ;
Mazevet, S. ;
Oliveira, M. J. T. ;
Onida, G. ;
Pouillon, Y. ;
Rangel, T. ;
Rignanese, G. -M. ;
Sangalli, D. ;
Shaltaf, R. ;
Torrent, M. ;
Verstraete, M. J. ;
Zerah, G. ;
Zwanziger, J. W. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2582-2615
[42]   Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J].
Greeley, Jeff ;
Jaramillo, Thomas F. ;
Bonde, Jacob ;
Chorkendorff, I. B. ;
Norskov, Jens K. .
NATURE MATERIALS, 2006, 5 (11) :909-913
[43]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[44]  
Guerrero-Perez M.O., 2020, CAN J CHEM ENG, V99, P97, DOI [10.1002/cjce.23884, DOI 10.1002/cjce.23884]
[45]   Electronic factors determining the reactivity of metal surfaces [J].
Hammer, B ;
Norskov, JK .
SURFACE SCIENCE, 1995, 343 (03) :211-220
[46]   The nature of three-body interactions in DFT: Exchange and polarization effects [J].
Hapka, Michal ;
Rajchel, Lukasz ;
Modrzejewski, Marcin ;
Schaeffer, Rainer ;
Chalasinski, Grzegorz ;
Szczesniak, Malgorzata M. .
JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (08)
[47]  
Hartree DR, 1928, P CAMB PHILOS SOC, V24, P111
[48]   Self-consistent field, with exchange, for beryllium [J].
Hartree, DR ;
Hartree, FRS ;
Hartree, W .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1935, 150 (A869) :0009-0033
[49]   Thermodynamic integration based on classical atomistic simulations to determine the Gibbs energy of condensed phases: Calculation of the aluminum-zirconium system [J].
Harvey, J. -P. ;
Gheribi, A. E. ;
Chartrand, P. .
PHYSICAL REVIEW B, 2012, 86 (22)
[50]   Accurate determination of the Gibbs energy of Cu-Zr melts using the thermodynamic integration method in Monte Carlo simulations [J].
Harvey, J. -P. ;
Gheribi, A. E. ;
Chartrand, P. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (08)