Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries

被引:86
作者
Liu, Xianghong [1 ]
Si, Wenping [1 ,2 ]
Zhang, Jun [5 ]
Sun, Xiaolei [1 ,2 ]
Deng, Junwen [1 ,2 ]
Baunack, Stefan [1 ]
Oswald, Steffen [6 ]
Liu, Lifeng [7 ]
Yan, Chenglin [1 ,3 ,4 ]
Schmidt, Oliver G. [1 ,2 ]
机构
[1] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany
[2] Tech Univ Chemnitz, D-09107 Chemnitz, Germany
[3] Soochow Univ, Coll Phys Optoelect & Energy, Suzhou 215006, Peoples R China
[4] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[5] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[6] IFW Dresden, Inst Complex Mat, D-01069 Dresden, Germany
[7] Int Iberian Nanotechnol Lab INL, P-4715330 Braga, Portugal
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
中国国家自然科学基金;
关键词
LITHIUM-STORAGE; NANOSTRUCTURED MATERIALS; DIFFUSION-COEFFICIENT; ENERGY-CONVERSION; ANODE MATERIAL; STABLE ANODES; PASSIVE FILM; SOLID FILMS; ALPHA-FE2O3; IRON;
D O I
10.1038/srep07452
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With Fe2O3 as a proof-of-concept, free-standing nanomembrane structure is demonstrated to be highly advantageous to improve the performance of Li-ion batteries. TheFe(2)O(3) nanomembrane electrodes exhibit ultra-long cycling life at high current rates with satisfactory capacity (808 mAh g(-1) after 1000 cycles at 2 C and 530 mAh g(-1) after 3000 cycles at 6 C) as well as repeatable high rate capability up to 50 C. The excellent performance benefits particularly from the unique structural advantages of the nanomembranes. The mechanical feature can buffer the strain of lithiation/delithiation to postpone the pulverization. The two-dimensional transport pathways in between the nanomembranes can promote the pseudo-capacitive type storage. The parallel-laid nanomembranes, which are coated by polymeric gel-like film and SEI layer with the electrolyte in between layers, electrochemically behave like numerous "mini-capacitors'' to provide the pseudo-capacitance thus maintain the capacity at high rate.
引用
收藏
页数:8
相关论文
共 51 条
  • [1] An attempt of experimental separation of the potentiodynamic anodic peaks of iron in alkaline solutions and application of the ohmic model for passive film growth
    Amaral, ST
    Martini, EMA
    Müller, IL
    [J]. CORROSION SCIENCE, 2001, 43 (05) : 853 - 879
  • [2] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [3] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [4] Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
  • [5] Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity
    Balaya, P
    Li, H
    Kienle, L
    Maier, J
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) : 621 - 625
  • [6] Bersani D, 1999, J RAMAN SPECTROSC, V30, P355, DOI 10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO
  • [7] 2-C
  • [8] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946
  • [9] Self-Assembled Ultra-Compact Energy Storage Elements Based on Hybrid Nanomembranes
    Bufon, Carlos Cesar Bof
    Gonzalez, Jose David Cojal
    Thurmer, Dominic J.
    Grimm, Daniel
    Bauer, Martin
    Schmidt, Oliver G.
    [J]. NANO LETTERS, 2010, 10 (07) : 2506 - 2510
  • [10] α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications
    Chen, J
    Xu, LN
    Li, WY
    Gou, XL
    [J]. ADVANCED MATERIALS, 2005, 17 (05) : 582 - +