TWO-SAMPLE KOLMOGOROV-SMIRNOV-TYPE TESTS REVISITED: OLD AND NEW TESTS IN TERMS OF LOCAL LEVELS

被引:13
作者
Finner, Helmut [1 ]
Gontscharuk, Veronika [2 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Biometr & Epidemiol, Leibniz Ctr Diabet Res, German Diabet Ctr DDZ, Hennekamp 65, D-40225 Dusseldorf, Germany
[2] Heinrich Heine Univ Dusseldorf, Inst Hlth Serv Res & Hlth Econ, Leibniz Ctr Diabet Res, German Diabet Ctr DDZ, Hennekamp 65, D-40225 Dusseldorf, Germany
关键词
Goodness-of-fit; higher criticism test; local levels; multiple hypotheses testing; nonparametric two-sample tests; order statistics; weighted Brownian bridge; OF-FIT TESTS; HIGHER CRITICISM; CONFIDENCE BANDS; TEST STATISTICS; ASYMPTOTICS; SAMPLE; POWER;
D O I
10.1214/17-AOS1647
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
From a multiple testing viewpoint, Kolmogorov-Smirnov (KS)-type tests are union-intersection tests which can be redefined in terms of local levels. The local level perspective offers a new viewpoint on ranges of sensitivity of KS-type tests and the design of new tests. We study the finite and asymptotic local level behavior of weighted KS tests which are either tail, intermediate or central sensitive. Furthermore, we provide new tests with approximately equal local levels and prove that the asymptotics of such tests with sample sizes m and n coincides with the asymptotics of one-sample higher criticism tests with sample size min(m, n). We compare the overall power of various tests and introduce local powers that are in line with local levels. Finally, suitably parameterized local level shape functions can be used to design new tests. We illustrate how to combine tests with different sensitivity in terms of local levels.
引用
收藏
页码:3045 / 3068
页数:24
相关论文
共 29 条
[1]   The Power to See: A New Graphical Test of Normality (vol 67, pg 249, 2013) [J].
Aldor-Noiman, Sivan ;
Brown, Lawrence D. ;
Buja, Andreas ;
Rolke, Wolfgang ;
Stine, Robert A. .
AMERICAN STATISTICIAN, 2014, 68 (04) :318-318
[2]   The Power to See: A New Graphical Test of Normality [J].
Aldor-Noiman, Sivan ;
Brown, Lawrence D. ;
Buja, Andreas ;
Rolke, Wolfgang ;
Stine, Robert A. .
AMERICAN STATISTICIAN, 2013, 67 (04) :249-260
[3]  
[Anonymous], 2004, FESTSCHRIFT HERMAN R
[4]  
BARNARD GA, 1947, BIOMETRIKA, V34, P123, DOI 10.1093/biomet/34.1-2.123
[5]  
BERK RH, 1978, SCAND J STAT, V5, P158
[6]   GOODNESS-OF-FIT TEST STATISTICS THAT DOMINATE THE KOLMOGOROV STATISTICS [J].
BERK, RH ;
JONES, DH .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (01) :47-59
[7]   SIMULATION STUDY OF ONE-SAMPLE AND 2-SAMPLE KOLMOGOROV-SMIRNOV STATISTICS WITH A PARTICULAR WEIGHT FUNCTION [J].
CANNER, PL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (349) :209-211
[8]   WEIGHTED EMPIRICAL AND QUANTILE PROCESSES [J].
CSORGO, M ;
CSORGO, S ;
HORVATH, L ;
MASON, DM .
ANNALS OF PROBABILITY, 1986, 14 (01) :31-85
[9]  
DOKSUM KA, 1976, BIOMETRIKA, V63, P421, DOI 10.2307/2335720
[10]   Higher criticism for detecting sparse heterogeneous mixtures [J].
Donoho, D ;
Jin, JS .
ANNALS OF STATISTICS, 2004, 32 (03) :962-994