A non-enzymatic sensor for hydrogen peroxide based on the use of α-Fe2O3 nanoparticles deposited on the surface of NiO nanosheets

被引:46
|
作者
Achari, Divyalakshmi Saravana [1 ]
Santhosh, Chella [2 ]
Deivasegamani, Revathy [1 ]
Nivetha, Ravi [1 ]
Bhatnagar, Amit [2 ]
Jeong, Soon Kwan [3 ]
Grace, Andrews Nirmala [1 ]
机构
[1] VIT Univ, Ctr Nanotechnol Res, Vellore 632014, Tamil Nadu, India
[2] Univ Eastern Finland, Dept Environm & Biol Sci, POB 1627, FI-70211 Kuopio, Finland
[3] Korea Inst Energy Res, Green Energy Proc Lab, 152 Gajeong Ro, Daejeon 34129, South Korea
关键词
NiO/alpha-Fe2O3; Nanocomposites; Non-enzymatic sensor; H2O2; Amperometry; Electrocatalysis; GLASSY-CARBON ELECTRODE; ELECTROCATALYTIC OXIDATION; BIOSENSOR; GRAPHENE; GLUCOSE; HEMOGLOBIN; NANOTUBES; IMMOBILIZATION; NANOWALLS; ALCOHOLS;
D O I
10.1007/s00604-017-2335-8
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work reports on the synthesis of nanocomposites from NiO and alpha-Fe2O3 by a hydrothermal route. The material was characterized in terms of structural and morphological features by X-ray diffraction and scanning electron microscopy. The nanocomposites were synthesized by growing alpha-Fe2O3 nanoparticles on the surface of flower-like NiO nanosheets, and then characterized by cyclic voltammetry and amperometric techniques. A glassy carbon electrode (GCE) modified with the nanocomposite displayed distinctly improved response to H2O2 compared to a GCE modified with bare NiO. The H2O2 sensor, best operated at a voltage of 0.4 V (vs. Ag/AgCl) has a sensitivity of 146.98 mu A.mu M-1.cm(-2), a 0.05 mM lower detection limit, and a linear working range that extends from 0.5 to 3 mM of H2O2. The sensor is reproducible and long-term stable even in the presence of various interfering molecules such as ascorbic acid and uric acid.
引用
收藏
页码:3223 / 3229
页数:7
相关论文
共 50 条
  • [31] A sensitive non-enzymatic electrochemical sensor based on acicular manganese dioxide modified graphene nanosheets composite for hydrogen peroxide detection
    Guan, Jin-Feng
    Huang, Zhao-Ning
    Zou, Jiao
    Jiang, Xin-Yu
    Peng, Dong-Ming
    Yu, Jin-Gang
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 190
  • [32] A Non-enzymatic Hydrogen Peroxide Photoelectrochemical Sensor Based on a BiVO4 Electrode
    Liu, Min
    Yu, Yu-Xiang
    Zhang, Wei-De
    ELECTROANALYSIS, 2017, 29 (01) : 305 - 311
  • [33] A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode
    Baghayeri, Mehdi
    Sedrpoushan, Alireza
    Mohammadi, Alireza
    Heidari, Masoud
    IONICS, 2017, 23 (06) : 1553 - 1562
  • [34] Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose
    Li, Xueyuan
    Du, Xuezhong
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 239 : 536 - 543
  • [35] Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles
    Zhong, Huaan
    Yuan, Ruo
    Chai, Yaqin
    Zhang, Yu
    Wang, Chengyan
    Jia, Feng
    MICROCHIMICA ACTA, 2012, 176 (3-4) : 389 - 395
  • [36] α-Fe2O3 nanorod arrays for bioanalytical applications: nitrite and hydrogen peroxide detection
    Liu, Xijun
    Liu, Junfeng
    Chang, Zheng
    Luo, Liang
    Lei, Xiaodong
    Sun, Xiaoming
    RSC ADVANCES, 2013, 3 (22) : 8489 - 8494
  • [37] Graphitic carbon nitride/α-Fe2O3 heterostructures for sensitive photoelectrochemical non-enzymatic glucose sensor
    Li, Weibin
    Jiang, Desheng
    Yan, Pengcheng
    Dong, Jintao
    Qian, Junchao
    Chen, Jianping
    Xu, Li
    INORGANIC CHEMISTRY COMMUNICATIONS, 2019, 106 : 211 - 216
  • [38] A sensitive nonenzymatic hydrogen peroxide sensor based on Fe3O4–Fe2O3 nanocomposites
    GUANG SHENG CAO
    PEILONG WANG
    XIN LI
    YUE WANG
    GUILONG WANG
    JUNPING LI
    Bulletin of Materials Science, 2015, 38 : 163 - 167
  • [39] Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods
    Al-Hardan, Naif H.
    Hamid, Muhammad Azmi Abdul
    Shamsudin, Roslinda
    Othman, Norinsan Kamil
    Keng, Lim Kar
    SENSORS, 2016, 16 (07)
  • [40] Enhanced non-enzymatic electrochemical sensing of hydrogen peroxide based on Cu2O nanocubes/Ag-Au alloy nanoparticles by incorporation of RGO nanosheets
    Li, Di
    Meng, Lingyu
    Xiao, Peng
    Jiang, Deli
    Dang, Shengchun
    Chen, Min
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 791 : 23 - 28