Critical dipoles in one, two, and three dimensions

被引:37
作者
Connolly, Kevin [1 ]
Griffiths, David J. [1 ]
机构
[1] Reed Coll, Dept Phys, Portland, OR 97202 USA
关键词
QUANTUM-MECHANICS; CHARGED PARTICLE; ELECTRIC-DIPOLE; BOUND-STATES; BIND; RENORMALIZATION; FIELD; ATOM;
D O I
10.1119/1.2710485
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The Schrodinger equation for a point charge in the field of a stationary electric dipole admits bound states only when the dipole moment exceeds a certain critical value. It is not hard to see why this might be the case, but it is surprisingly difficult to calculate the critical dipole moment. The analogous problem should be simpler in one and two dimensions, but a general theorem forbids critical moments in one dimension, and explicit calculation shows that there is no critical moment in two dimensions. (C) 2007 American Association of Physics Teachers.
引用
收藏
页码:524 / 531
页数:8
相关论文
共 28 条
[1]  
Abromowitz M., 1965, HDB MATH FUNCTIONS
[2]   THE HYDROGENIC ATOM AND THE PERIODIC TABLE OF THE ELEMENTS IN 2 SPATIAL DIMENSIONS [J].
ASTURIAS, FJ ;
ARAGON, SR .
AMERICAN JOURNAL OF PHYSICS, 1985, 53 (09) :893-899
[3]  
BOAS ML, 1983, MATH METHODS PHYS SC, P431
[4]   ON CRITICAL BINDING OF AN ELECTRON BY AN ELECTRIC DIPOLE [J].
BROWN, WB ;
ROBERTS, RE .
JOURNAL OF CHEMICAL PHYSICS, 1967, 46 (05) :2006-&
[5]   Criterion for existence of a bound state in one dimension [J].
Brownstein, KR .
AMERICAN JOURNAL OF PHYSICS, 2000, 68 (02) :160-161
[6]   Renormalization of the inverse square potential [J].
Camblong, HE ;
Epele, LN ;
Fanchiotti, H ;
Canal, CAC .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1590-1593
[7]   Quantum anomaly in molecular physics [J].
Camblong, HE ;
Epele, LN ;
Fanchiotti, H ;
Canal, CAG .
PHYSICAL REVIEW LETTERS, 2001, 87 (22) :art. no.-220402
[8]   Anomalies in quantum mechanics:: The 1/r2 potential [J].
Coon, SA ;
Holstein, BR .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (05) :513-519
[9]   BOUND STATES OF A CHARGED PARTICLE IN A DIPOLE FIELD [J].
CRAWFORD, OH .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 91 (572P) :279-&
[10]   Quantum mechanics of the 1/x2 potential [J].
Essin, AM ;
Griffiths, DJ .
AMERICAN JOURNAL OF PHYSICS, 2006, 74 (02) :109-117