Development of a Traumatic Anterior Cruciate Ligament and Meniscal Rupture Model With a Pilot In Vivo Study

被引:23
作者
Isaac, Daniel I. [1 ]
Meyer, Eric G. [1 ]
Haut, Roger C. [1 ]
机构
[1] Michigan State Univ, Coll Osteopath Med, Orthopaed Biomech Labs, E Lansing, MI 48824 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2010年 / 132卷 / 06期
关键词
anterior cruciate ligament rupture; knee injury; animal model; tibiofemoral compression; BONE BRUISE; KNEE; OSTEOARTHRITIS; CARTILAGE; INJURY; COMPRESSION; LESIONS; MRI;
D O I
10.1115/1.4001111
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The current study describes the development of a small animal, closed-joint model of traumatic anterior cruciate ligament (A CL) and meniscal rupture. This model can be used in future studies to investigate the roles of these acute damages on the long-term health of an injured knee joint. Forty-two Flemish Giant rabbits received an insult to the left tibiofemoral joint ex vivo in order to document optimal energy and joint orientation needed to generate ACL and meniscal rupture, without gross fracture of bone. Impact energies ranged from 10 J to 22 J, and joint flexion angle ranged from 60 deg to 90 deg. Three in vivo animals were impacted at 13 J with the knee flexed at 90 deg, as this was determined to be the optimal load and joint orientation for ACL and meniscal ruptures, and sacrificed at 12 weeks. Impact data from the ex vivo group revealed that 13 J of dropped-mass energy, generating approximately 1100 N of load on the knee, would cause ACL and meniscal ruptures, without gross bone fracture. Acute damage to the lateral and medial menisci was documented in numerous ex vivo specimens, with isolated lateral meniscal tears being more frequent than isolated medial tears in other cases. The in vivo animals showed no signs of ill health or other physical complications. At 12 week post-trauma these animals displayed marked degeneration of the traumatized joint including synovitis, cartilage erosion, and the formation of peripheral osteophytes. Histological microcracks at the calcified cartilage-subchondral bone interface were also evident in histological sections of these animals. A closed-joint model of traumatic ACL and meniscal rupture was produced, without gross bone fracture, and a pilot, in vivo study showed progressive joint degeneration without any other noticeable physical impairments of the animals over 12 weeks. This closed-joint, traumatic injury model may be useful in future experimental studies of joint disease and various intervention strategies. [DOI: 10.1115/1.4001111]
引用
收藏
页数:4
相关论文
共 50 条
[41]   Relationship between anterior cruciate ligament rupture and the posterior tibial and meniscal slopes in professional soccer athletes [J].
Marcos Hiroyuki Ikawa ;
André Fukunishi Yamada ;
Artur da Rocha Corrêa Fernandes ;
Abdalla Youssef Skaf ;
Moisés Cohen ;
Gustavo Gonçalves Arliani .
Skeletal Radiology, 2021, 50 :2041-2047
[42]   An Anterior Cruciate Ligament In Vitro Rupture Model Based on Clinical Imaging [J].
Willinger, Lukas ;
Athwal, Kiron K. ;
Williams, Andy ;
Amis, Andrew A. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2021, 49 (09) :2387-2395
[43]   The posterior cruciate ligament index as a reliable indirect sign of anterior cruciate ligament rupture is associated with the course of knee joint injury [J].
Heng Gong ;
Qingshan Li ;
Yu Len ;
Ke He ;
Wenbo Zhao ;
Yu Li ;
Guanjun Sun ;
Xu Peng ;
Yi Yin .
Knee Surgery, Sports Traumatology, Arthroscopy, 2023, 31 :3277-3283
[44]   Bone mineral density changes in the knee following anterior cruciate ligament rupture [J].
van Meer, B. L. ;
Waarsing, J. H. ;
van Eijsden, W. A. ;
Meuffels, D. E. ;
van Arkel, E. R. A. ;
Verhaar, J. A. N. ;
Bierma-Zeinstra, S. M. A. ;
Reijman, M. .
OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (01) :154-161
[45]   Surgical and conservative treatment of anterior cruciate ligament rupture in sports [J].
Gille, J. ;
Paech, A. ;
Juergens, C. .
TRAUMA UND BERUFSKRANKHEIT, 2016, 18 :S506-S510
[46]   Chronic anterior cruciate ligament tears and associated meniscal and traumatic cartilage lesions: evaluation with morphological sequences at 3.0 T [J].
Vlychou, Marianna ;
Hantes, Michalis ;
Michalitsis, Sotirios ;
Tsezou, Aspasia ;
Fezoulidis, Ioannis V. ;
Malizos, Konstantinos .
SKELETAL RADIOLOGY, 2011, 40 (06) :709-716
[47]   Consequences of anterior cruciate ligament rupture: a systematic umbrella review [J].
Diemer, Frank ;
Zebisch, Jochen ;
Saueressig, Tobias .
SPORTVERLETZUNG-SPORTSCHADEN, 2022, 36 (01) :18-37
[48]   Genetic Variants and Anterior Cruciate Ligament Rupture: A Systematic Review [J].
Kaynak, Mustafa ;
Nijman, Frank ;
van Meurs, Joyce ;
Reijman, Max ;
Meuffels, Duncan E. .
SPORTS MEDICINE, 2017, 47 (08) :1637-1650
[49]   Pain and knee function in relation to degree of bone bruise after acute anterior cruciate ligament rupture [J].
Szkopek, K. ;
Warming, T. ;
Neergaard, K. ;
Jorgensen, H. L. ;
Christensen, H. E. ;
Krogsgaard, M. .
SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS, 2012, 22 (05) :635-642
[50]   Cartilage morphology at 2-3 years following anterior cruciate ligament reconstruction with or without concomitant meniscal pathology [J].
Wang, Xinyang ;
Wang, Yuanyuan ;
Bennell, Kim L. ;
Wrigley, Tim V. ;
Cicuttini, Flavia M. ;
Fortin, Karine ;
Saxby, David J. ;
Van Ginckel, Ans ;
Dempsey, Alasdair R. ;
Grigg, Nicole ;
Vertullo, Christopher ;
Feller, Julian A. ;
Whitehead, Tim ;
Lloyd, David G. ;
Bryant, Adam L. .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2017, 25 (02) :426-436