Development of a Traumatic Anterior Cruciate Ligament and Meniscal Rupture Model With a Pilot In Vivo Study

被引:23
作者
Isaac, Daniel I. [1 ]
Meyer, Eric G. [1 ]
Haut, Roger C. [1 ]
机构
[1] Michigan State Univ, Coll Osteopath Med, Orthopaed Biomech Labs, E Lansing, MI 48824 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2010年 / 132卷 / 06期
关键词
anterior cruciate ligament rupture; knee injury; animal model; tibiofemoral compression; BONE BRUISE; KNEE; OSTEOARTHRITIS; CARTILAGE; INJURY; COMPRESSION; LESIONS; MRI;
D O I
10.1115/1.4001111
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The current study describes the development of a small animal, closed-joint model of traumatic anterior cruciate ligament (A CL) and meniscal rupture. This model can be used in future studies to investigate the roles of these acute damages on the long-term health of an injured knee joint. Forty-two Flemish Giant rabbits received an insult to the left tibiofemoral joint ex vivo in order to document optimal energy and joint orientation needed to generate ACL and meniscal rupture, without gross fracture of bone. Impact energies ranged from 10 J to 22 J, and joint flexion angle ranged from 60 deg to 90 deg. Three in vivo animals were impacted at 13 J with the knee flexed at 90 deg, as this was determined to be the optimal load and joint orientation for ACL and meniscal ruptures, and sacrificed at 12 weeks. Impact data from the ex vivo group revealed that 13 J of dropped-mass energy, generating approximately 1100 N of load on the knee, would cause ACL and meniscal ruptures, without gross bone fracture. Acute damage to the lateral and medial menisci was documented in numerous ex vivo specimens, with isolated lateral meniscal tears being more frequent than isolated medial tears in other cases. The in vivo animals showed no signs of ill health or other physical complications. At 12 week post-trauma these animals displayed marked degeneration of the traumatized joint including synovitis, cartilage erosion, and the formation of peripheral osteophytes. Histological microcracks at the calcified cartilage-subchondral bone interface were also evident in histological sections of these animals. A closed-joint model of traumatic ACL and meniscal rupture was produced, without gross bone fracture, and a pilot, in vivo study showed progressive joint degeneration without any other noticeable physical impairments of the animals over 12 weeks. This closed-joint, traumatic injury model may be useful in future experimental studies of joint disease and various intervention strategies. [DOI: 10.1115/1.4001111]
引用
收藏
页数:4
相关论文
共 50 条
[31]   Factors Associated With Meniscal Tears and Chondral Lesions in Patients Undergoing Anterior Cruciate Ligament Reconstruction A Prospective Study [J].
Kluczynski, Melissa A. ;
Marzo, John M. ;
Bisson, Leslie J. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2013, 41 (12) :2759-2765
[32]   Comparison in knee osteoarthritis joint damage patterns among individuals with an intact, complete and partial anterior cruciate ligament rupture [J].
Johnson, Victoria L. ;
Guermazi, Ali ;
Roemer, Frank W. ;
Hunter, David J. .
INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, 2017, 20 (10) :1361-1371
[33]   A Novel Application of Unsupervised Machine Learning and Supervised Machine Learning-Derived Radiomics in Anterior Cruciate Ligament Rupture [J].
Chen, De-Sheng ;
Wang, Tong-Fu ;
Zhu, Jia-Wang ;
Zhu, Bo ;
Wang, Zeng-Liang ;
Cao, Jian-Gang ;
Feng, Cai-Hong ;
Zhao, Jun-Wei .
RISK MANAGEMENT AND HEALTHCARE POLICY, 2021, 14 :2657-2664
[34]   Anterior cruciate ligament rupture in gouty arthritis [J].
Hwang, Hyun-Jung ;
Lee, Soon-Hyuck ;
Han, Seung-Beom ;
Park, Si-Young ;
Jeong, Woong-Kyo ;
Kim, Chul-Hwan ;
Lee, Dae-Hee .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2012, 20 (08) :1540-1542
[35]   Anterior cruciate ligament rupture: Delay to diagnosis [J].
Perera, N. S. ;
Joel, J. ;
Bunola, J. A. .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2013, 44 (12) :1862-1865
[36]   Anterior cruciate ligament rupture - state of the art [J].
Lobenhoffer, P. ;
Agneskirchner, J. D. .
ARTHROSKOPIE, 2005, 18 (01) :11-14
[37]   Factors related to the risk of meniscal injury in dogs with cranial cruciate ligament rupture [J].
Necas, A ;
Zatloukal, J .
ACTA VETERINARIA BRNO, 2002, 71 (01) :77-84
[38]   Reconstruction in Partial Rupture of the anterior Cruciate Ligament [J].
Lorenz, S. ;
Imhoff, A. B. .
OPERATIVE ORTHOPADIE UND TRAUMATOLOGIE, 2014, 26 (01) :56-62
[39]   Relationship between anterior cruciate ligament rupture and the posterior tibial and meniscal slopes in professional soccer athletes [J].
Ikawa, Marcos Hiroyuki ;
Yamada, Andre Fukunishi ;
da Rocha Correa Fernandes, Artur ;
Skaf, Abdalla Youssef ;
Cohen, Moises ;
Arliani, Gustavo Goncalves .
SKELETAL RADIOLOGY, 2021, 50 (10) :2041-2047
[40]   The posterior cruciate ligament index as a reliable indirect sign of anterior cruciate ligament rupture is associated with the course of knee joint injury [J].
Gong, Heng ;
Li, Qingshan ;
Len, Yu ;
He, Ke ;
Zhao, Wenbo ;
Li, Yu ;
Sun, Guanjun ;
Peng, Xu ;
Yin, Yi .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2023, 31 (08) :3277-3283