Chimera states in a Duffing oscillators chain coupled to nearest neighbors

被引:37
|
作者
Clerc, M. G. [1 ,2 ]
Coulibaly, S. [3 ]
Ferre, M. A. [1 ,2 ]
Rojas, R. G. [4 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Casilla 487-3, Santiago, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Millennium Inst Res Opt, Casilla 487-3, Santiago, Chile
[3] Univ Lille, CNRS, UMR 8523, PhLAM Phys Lasers Atomes & Mol, F-59000 Lille, France
[4] Pontificia Univ Catolica Valparaiso, Intituto Fis, Valparaiso 4059, Chile
关键词
POPULATIONS; COHERENCE; DYNAMICS; PATTERNS; NETWORK;
D O I
10.1063/1.5025038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Coupled nonlinear oscillators can present complex spatiotemporal behaviors. Here, we report the coexistence of coherent and incoherent domains, called chimera states, in an array of identical Duffing oscillators coupled to their nearest neighbors. The chimera states show a significant variation of amplitude in the desynchronized domain. These intriguing states are observed in the bistability region between a homogeneous state and a spatiotemporal chaotic one. These dynamical behaviors are characterized by their Lyapunov spectra and their global phase coherence order parameter. The local coupling between oscillators prevents one domain from invading the other one. Depending on initial conditions, a family of chimera states appear, organized in a snaking-like diagram. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Minimal chimera states in phase-lag coupled mechanical oscillators
    P. Ebrahimzadeh
    M. Schiek
    P. Jaros
    T. Kapitaniak
    S. van Waasen
    Y. Maistrenko
    The European Physical Journal Special Topics, 2020, 229 : 2205 - 2214
  • [42] Multicluster and traveling chimera states in nonlocal phase-coupled oscillators
    Xie, Jianbo
    Knobloch, Edgar
    Kao, Hsien-Ching
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [43] The drift of chimera states in a ring of nonlocally coupled bicomponent phase oscillators
    Wang, Wenhao
    Dai, Qionglin
    Cheng, Hongyan
    Li, Haihong
    Yang, Junzhong
    EPL, 2019, 125 (05)
  • [44] Chimera and phase-cluster states in populations of coupled chemical oscillators
    Tinsley M.R.
    Nkomo S.
    Showalter K.
    Nature Physics, 2012, 8 (9) : 662 - 665
  • [45] Exact solutions for coupled Duffing oscillators
    Lenci, Stefano
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 165
  • [46] Multistability of Globally Coupled Duffing Oscillators
    Sosa, Raul I.
    Zanette, Damian H.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (04):
  • [47] Capture into resonance of coupled Duffing oscillators
    Kovaleva, Agnessa
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [48] Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators
    Semenova, N. I.
    Strelkova, G. I.
    Anishchenko, V. S.
    Zakharova, A.
    CHAOS, 2017, 27 (06)
  • [49] Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators
    Gambuzza, Lucia Valentina
    Buscarino, Arturo
    Chessari, Sergio
    Fortuna, Luigi
    Meucci, Riccardo
    Frasca, Mattia
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [50] Existence and Control of Chimera States in Networks of Nonlocally Coupled Models of Neuron Oscillators
    Hizanidis, Johanne
    Kanas, Vasileios G.
    Bezerianos, Anastasios
    Bountis, Tassos
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 243 - 246