Chimera states in a Duffing oscillators chain coupled to nearest neighbors

被引:37
|
作者
Clerc, M. G. [1 ,2 ]
Coulibaly, S. [3 ]
Ferre, M. A. [1 ,2 ]
Rojas, R. G. [4 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Casilla 487-3, Santiago, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Millennium Inst Res Opt, Casilla 487-3, Santiago, Chile
[3] Univ Lille, CNRS, UMR 8523, PhLAM Phys Lasers Atomes & Mol, F-59000 Lille, France
[4] Pontificia Univ Catolica Valparaiso, Intituto Fis, Valparaiso 4059, Chile
关键词
POPULATIONS; COHERENCE; DYNAMICS; PATTERNS; NETWORK;
D O I
10.1063/1.5025038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Coupled nonlinear oscillators can present complex spatiotemporal behaviors. Here, we report the coexistence of coherent and incoherent domains, called chimera states, in an array of identical Duffing oscillators coupled to their nearest neighbors. The chimera states show a significant variation of amplitude in the desynchronized domain. These intriguing states are observed in the bistability region between a homogeneous state and a spatiotemporal chaotic one. These dynamical behaviors are characterized by their Lyapunov spectra and their global phase coherence order parameter. The local coupling between oscillators prevents one domain from invading the other one. Depending on initial conditions, a family of chimera states appear, organized in a snaking-like diagram. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators
    Nkomo, Simbarashe
    Tinsley, Mark R.
    Showalter, Kenneth
    CHAOS, 2016, 26 (09)
  • [32] Impact of Hyperbolicity on Chimera States in Ensembles of Nonlocally Coupled Chaotic Oscillators
    Semenova, N.
    Zakharova, A.
    Schoell, E.
    Anishchenko, V.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [33] Mechanism for intensity-induced chimera states in globally coupled oscillators
    Chandrasekar, V. K.
    Gopal, R.
    Venkatesan, A.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2014, 90 (06)
  • [34] Spiral wave chimera states in large populations of coupled chemical oscillators
    Totz, Jan Frederik
    Rode, Julian
    Tinsley, Mark R.
    Showalter, Kenneth
    Engel, Harald
    NATURE PHYSICS, 2018, 14 (03) : 282 - +
  • [35] Minimal chimera states in phase-lag coupled mechanical oscillators
    Ebrahimzadeh, P.
    Schiek, M.
    Jaros, P.
    Kapitaniak, T.
    van Waasen, S.
    Maistrenko, Y.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (12-13): : 2205 - 2214
  • [36] Chimera states in two-dimensional networks of locally coupled oscillators
    Kundu, Srilena
    Majhi, Soumen
    Bera, Bidesh K.
    Ghosh, Dibakar
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2018, 97 (02)
  • [37] Taming non-stationary chimera states in locally coupled oscillators
    Li, Xueqi
    Lei, Youming
    Ghosh, Dibakar
    CHAOS, 2022, 32 (09)
  • [38] Spiral wave chimera states in large populations of coupled chemical oscillators
    Jan Frederik Totz
    Julian Rode
    Mark R. Tinsley
    Kenneth Showalter
    Harald Engel
    Nature Physics, 2018, 14 : 282 - 285
  • [39] Chimera and phase-cluster states in populations of coupled chemical oscillators
    Tinsley, Mark R.
    Nkomo, Simbarashe
    Showalter, Kenneth
    NATURE PHYSICS, 2012, 8 (09) : 662 - 665
  • [40] Chimera states in systems of nonlocal nonidentical phase-coupled oscillators
    Xie, Jianbo
    Kao, Hsien-Ching
    Knobloch, Edgar
    PHYSICAL REVIEW E, 2015, 91 (03):