Fault isolation using extrinsic curvature of nonlinear fault models

被引:0
作者
Vemuri, Arun [1 ]
Subbarao, Kamesh [2 ]
机构
[1] VLR Embedded Inc, 3035 W 15th St, Plano, TX 75075 USA
[2] Univ Texas Arlington, Dept Mech & Aero Engn, Arlington, TX 76019 USA
来源
2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5 | 2006年
关键词
fault isolation; extrinsic curvature; nonlinear systems;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an online fault isolation methodology for identifying faulty components in a dynamical system. It is hypothesized that faults in a dynamical system can be suitably represented via nonlinear functions. The isolation scheme, which is implemented online, relies on adaptive nonlinear estimates of these nonlinear fault functions based on the system input output data. The nonlinear fault estimation is achieved using a radial basis function neural network (RBFNN) architecture while the fault isolation is accomplished using extrinsic curvature of the learned RBFNN model. A simple simulation example is presented to illustrate the concept.
引用
收藏
页码:1025 / +
页数:3
相关论文
共 18 条
[1]   ANALYTICAL REDUNDANCY AND THE DESIGN OF ROBUST FAILURE-DETECTION SYSTEMS [J].
CHOW, EY ;
WILLSKY, AS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (07) :603-614
[2]  
Clayton D., 1993, STAT MODELS EPIDEMIO
[3]   FRAMEWORK FOR ENHANCING FAULT-DIAGNOSIS CAPABILITIES OF ARTIFICIAL NEURAL NETWORKS [J].
FARELL, AE ;
ROAT, SD .
COMPUTERS & CHEMICAL ENGINEERING, 1994, 18 (07) :613-635
[4]   FAULT-DIAGNOSIS IN DYNAMIC-SYSTEMS USING ANALYTICAL AND KNOWLEDGE-BASED REDUNDANCY - A SURVEY AND SOME NEW RESULTS [J].
FRANK, PM .
AUTOMATICA, 1990, 26 (03) :459-474
[5]   A NEW STRUCTURAL FRAMEWORK FOR PARITY EQUATION-BASED FAILURE-DETECTION AND ISOLATION [J].
GERTLER, J ;
SINGER, D .
AUTOMATICA, 1990, 26 (02) :381-388
[6]  
Gertler J. J., 1988, IEEE Control Systems Magazine, V8, P3, DOI 10.1109/37.9163
[7]  
Himmelblau D. M., 1978, FAULT DETECTION DIAG, V8
[8]   FAULT-DIAGNOSIS IN COMPLEX CHEMICAL-PLANTS USING ARTIFICIAL NEURAL NETWORKS [J].
HOSKINS, JC ;
KALIYUR, KM ;
HIMMELBLAU, DM .
AICHE JOURNAL, 1991, 37 (01) :137-141
[9]   PROCESS FAULT-DETECTION BASED ON MODELING AND ESTIMATION METHODS - A SURVEY [J].
ISERMANN, R .
AUTOMATICA, 1984, 20 (04) :387-404
[10]  
Patton R. J., 1989, FAULT DIAGNOSIS DYNA