EXISTENCE AND UNIQUENESS OF GLOBAL CLASSICAL SOLUTIONS TO A TWO DIMENSIONAL TWO SPECIES CANCER INVASION HAPTOTAXIS MODEL

被引:11
作者
Giesselmann, Jan [1 ]
Kolbe, Niklas [2 ]
Lukacova-Medvidova, Maria [2 ]
Sfakianakis, Nikolaos [2 ,3 ]
机构
[1] Univ Stuttgart, Inst Appl Anal & Numer Simulat, D-70569 Stuttgart, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Math, D-55128 Mainz, Germany
[3] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2018年 / 23卷 / 10期
关键词
cancer stem cells; invasion of the extracellular matrix; haptotaxis model; advection-reaction-diffusion; classical solutions; RUNGE-KUTTA SCHEMES; STEM-CELLS; CHEMOTAXIS; TISSUE; BOUNDEDNESS; TRANSITION;
D O I
10.3934/dcdsb.2018169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a haptotaxis cancer invasion model that includes two families of cancer cells. Both families migrate on the extracellular matrix and proliferate. Moreover the model describes an epithelial-to-mesenchymal-like transition between the two families, as well as a degradation and a self-reconstruction process of the extracellular matrix. We prove in two dimensional space positivity and conditional global existence and uniqueness of the classical solutions of the problem for large initial data.
引用
收藏
页码:4397 / 4431
页数:35
相关论文
共 50 条
[1]   APPLICATION OF THE INVARIANCE PRINCIPLE TO REACTION-DIFFUSION EQUATIONS [J].
ALIKAKOS, ND .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (02) :201-225
[2]   Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation [J].
Andasari, Vivi ;
Gerisch, Alf ;
Lolas, Georgios ;
South, Andrew P. ;
Chaplain, Mark A. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) :141-171
[3]  
Anderson A.R.A., 2000, J. Theor. Med, V2
[4]  
[Anonymous], 2003, Cancer Modelling and Simulation
[5]   On the foundations of cancer modelling: Selected topics, speculations, and perspectives [J].
Bellomo, N. ;
Li, N. K. ;
Maini, P. K. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (04) :593-646
[6]  
Blanchet A., 2006, ELECT J DIFF EQNS, V44
[7]  
Brabletz T., NAT REV CANC, V5, P744
[8]   Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system [J].
Chaplain, MAJ ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1685-1734
[9]  
Corrias L., 2004, Milan J. Math., V72, P1, DOI DOI 10.1007/s00032-003-0026-x
[10]   THE TWO-DIMENSIONAL KELLER-SEGEL MODEL AFTER BLOW-UP [J].
Dolbeault, Jean ;
Schmeiser, Christian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) :109-121