On local finiteness of periodic residually finite groups

被引:6
作者
Kuzucouoglu, M [1 ]
Shumyatsky, P
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[2] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
关键词
automorphisms; centralizers; periodic groups;
D O I
10.1017/S0013091501000311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a periodic residually finite group containing a nilpotent subgroup A such that C-G (A) is finite. We show that if [A, A(g)] is finite for any g is an element of G, then G is locally finite.
引用
收藏
页码:717 / 721
页数:5
相关论文
共 50 条
[31]   Centralizers of commutators in finite groups [J].
Detomi, Eloisa ;
Morigi, Marta ;
Shumyatsky, Pavel .
JOURNAL OF ALGEBRA, 2022, 612 :475-486
[32]   A restriction on centralizers in finite groups [J].
Fernandez-Alcober, Gustavo A. ;
Legarreta, Leire ;
Tortora, Antonio ;
Tota, Maria .
JOURNAL OF ALGEBRA, 2014, 400 :33-42
[33]   The order of the product of two elements in the periodic groups [J].
Amiri, Mohsen ;
Lima, Igor .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (08) :3473-3480
[34]   On locally finite groups with a four-subgroup whose centralizer is small [J].
Lima, Enio ;
Shumyatsky, Pavel .
MONATSHEFTE FUR MATHEMATIK, 2013, 172 (01) :77-84
[35]   Conjugacy in finite state wreath powers of finite permutation groups [J].
Oliynyk, Andriy ;
Russyev, Andriy .
ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (01) :58-69
[36]   Finite groups as prescribed polytopal symmetries [J].
Chirvasitu, Alexandru ;
Ladisch, Frieder ;
Soberon, Pablo .
ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (01) :75-91
[37]   Semicomplete Finite p-Groups [J].
Attar, M. Shabani .
ALGEBRA COLLOQUIUM, 2011, 18 :937-944
[38]   GRADINGS BY FINITE GROUPS OF THE WITT ALGEBRA [J].
McGraw, Jason .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (03) :947-954
[39]   Finite soluble groups with metabelian centralizers [J].
Casolo, Carlo ;
Jabara, Enrico .
JOURNAL OF ALGEBRA, 2015, 422 :318-333
[40]   Fixed points in finite soluble groups [J].
Shumyatsky, P .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (10) :3405-3408