A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics

被引:152
|
作者
Riley, Nicholas M. [1 ]
Bertozzi, Carolyn R. [1 ,2 ]
Pitteri, Sharon J. [3 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Howard Hughes Med Inst, Stanford, CA USA
[3] Stanford Univ, Canary Ctr Stanford Canc Early Detect, Dept Radiol, Sch Med, Palo Alto, CA 94305 USA
基金
美国国家卫生研究院;
关键词
ELECTRON-TRANSFER DISSOCIATION; HYDROPHILIC INTERACTION CHROMATOGRAPHY; LECTIN AFFINITY-CHROMATOGRAPHY; GLCNAC-MODIFIED PROTEINS; SOLID-PHASE EXTRACTION; LINKED N-ACETYLGLUCOSAMINE; O-GLYCOSYLATION SITES; STRONG ANION-EXCHANGE; TITANIUM-DIOXIDE CHROMATOGRAPHY; METABOLIC CROSS-TALK;
D O I
10.1074/mcp.R120.002277
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Glycoproteomics based on tandem mass spectrometry of glycopeptides
    Wuhrer, Manfred
    Catalina, M. Isabel
    Deelder, Andre M.
    Hokke, Cornelis H.
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2007, 849 (1-2): : 115 - 128
  • [32] Strategies for Glycomics and Glycoproteomics and Glycosaminoglycan Analysis by Mass Spectrometry and HPLC
    Azadi, Parastoo
    Ishihara, Mayumi
    Heiss, Christian
    Talabnin, Krajang
    Wang, Zhirui
    Dimitrievska, Sashka
    Huizing, Marjan
    Niklason, Laura
    Sonon, Roberto
    GLYCOBIOLOGY, 2011, 21 (11) : 1526 - 1526
  • [33] Mass spectrometry-based proteomics
    Ruedi Aebersold
    Matthias Mann
    Nature, 2003, 422 : 198 - 207
  • [34] Mass spectrometry-based proteomics
    Hood, BL
    Veenstra, TD
    Conrads, TP
    ADVANCES IN FERTILITY AND REPRODUCTIVE MEDICINE, 2004, 1266 : 375 - 380
  • [35] Mass spectrometry-based metabolomics
    Dettmer, Katja
    Aronov, Pavel A.
    Hammock, Bruce D.
    MASS SPECTROMETRY REVIEWS, 2007, 26 (01) : 51 - 78
  • [36] Mass spectrometry-based quantification
    DeSouza, Leroi V.
    Siu, K. W. Michael
    CLINICAL BIOCHEMISTRY, 2013, 46 (06) : 421 - 431
  • [37] Mass spectrometry-based proteomics
    Aebersold, R
    Mann, M
    NATURE, 2003, 422 (6928) : 198 - 207
  • [38] Mass spectrometry-based proteomics strategies for protease cleavage site identification
    van den Berg, Bart H. J.
    Tholey, Andreas
    PROTEOMICS, 2012, 12 (4-5) : 516 - 529
  • [39] Mapping Cellular Polarity Networks Using Mass Spectrometry-based Strategies
    Daulat, Avais M.
    Puvirajesinghe, Tania M.
    Camoin, Luc
    Borg, Jean-Paul
    JOURNAL OF MOLECULAR BIOLOGY, 2018, 430 (19) : 3545 - 3564
  • [40] Evaluation of Data Analysis Strategies for Improved Mass Spectrometry-Based Phosphoproteomics
    Savitski, Mikhail M.
    Scholten, Arjen
    Sweetman, Gavain
    Mathieson, Toby
    Bantscheff, Marcus
    ANALYTICAL CHEMISTRY, 2010, 82 (23) : 9843 - 9849