Ship Collision Avoidance Using Constrained Deep Reinforcement Learning

被引:0
|
作者
Zhang, Rui [1 ]
Wang, Xiao [2 ]
Liu, Kezhong [3 ]
Wu, Xiaolie [4 ]
Lu, Tianyou [2 ]
Chao Zhaohui [2 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Technol, Hubei Key Lab Transportat Internet Things, Wuhan 434070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 434070, Hubei, Peoples R China
[3] Wuhan Univ Technol, Sch Nav, Hubei Key Lab Inland Shipping Technol, Wuhan 434070, Hubei, Peoples R China
[4] Wuhan Univ Technol, Sch Nav, Wuhan 434070, Hubei, Peoples R China
来源
2018 5TH INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC, AND SOCIO-CULTURAL COMPUTING (BESC) | 2018年
基金
中国国家自然科学基金;
关键词
reinforcement learning; constraint; collision avoidance; Deep Q Network;
D O I
10.1109/BESC.2018.00031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In recent years, the rapid development of mobile technology and application platforms has provided better services for life and work. Artificial intelligence and mobile technology have made traffic ever more convenient. As an artificial intelligence method that intersects with multiple disciplines and fields, reinforcement learning has been proved to be highly effective in the automatic driving of vehicles. However, there are still many difficulties in ship collision avoidance, because it involves continuous actions and complicated regulations. We find that by constraining the states, actions and regulation of reinforcement learning, we can well apply reinforcement learning to ship collision avoidance with vast states and actions at the same time. Hence, we propose Constrained-DQN(Deep Q Network), which is used to limit the state and action set, and separate reward value via different regulations. Experiments show that Constrained-DQN is more stable and adaptive in handling continuous space than traditional path planning algorithms.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条
  • [41] Collision Avoidance in IEEE 802.11 DCF using a Reinforcement Learning Method
    Lee, Chang Kyu
    Rhee, Seung Hyong
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 898 - 901
  • [42] Constrained attractor selection using deep reinforcement learning
    Wang, Xue-She
    Turner, James D.
    Mann, Brian P.
    JOURNAL OF VIBRATION AND CONTROL, 2021, 27 (5-6) : 502 - 514
  • [43] Deep reinforcement learning for autonomous vehicles: lane keep and overtaking scenarios with collision avoidance
    Ashwin S.H.
    Naveen Raj R.
    International Journal of Information Technology, 2023, 15 (7) : 3541 - 3553
  • [44] Intelligent collision avoidance algorithms for USVs via deep reinforcement learning under COLREGs
    Xu, Xinli
    Lu, Yu
    Liu, Xiaocheng
    Zhang, Weidong
    OCEAN ENGINEERING, 2020, 217
  • [45] A Deep Reinforcement Learning Method for Mobile Robot Collision Avoidance based on Double DQN
    Xue, Xidi
    Li, Zhan
    Zhang, Dongsheng
    Yan, Yingxin
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 2131 - 2136
  • [46] Bio-Inspired Collision Avoidance in Swarm Systems via Deep Reinforcement Learning
    Na, Seongin
    Niu, Hanlin
    Lennox, Barry
    Arvin, Farshad
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 2511 - 2526
  • [47] Multi-Robot Collision Avoidance with Map-based Deep Reinforcement Learning
    Yao, Shunyi
    Chen, Guangda
    Pan, Lifan
    Ma, Jun
    Ji, Jianmin
    Chen, Xiaoping
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 532 - 539
  • [48] A COLREGs-Compliant Collision Avoidance Decision Approach Based on Deep Reinforcement Learning
    Wang, Weiqiang
    Huang, Liwen
    Liu, Kezhong
    Wu, Xiaolie
    Wang, Jingyao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (07)
  • [49] Obstacle Avoidance for UAS in Continuous Action Space Using Deep Reinforcement Learning
    Hu, Jueming
    Yang, Xuxi
    Wang, Weichang
    Wei, Peng
    Ying, Lei
    Liu, Yongming
    IEEE ACCESS, 2022, 10 : 90623 - 90634
  • [50] The crowd cooperation approach for formation maintenance and collision avoidance using multi-agent deep reinforcement learning
    Sun, Libo
    Yan, Jiahui
    Qiu, Yongchun
    Qin, Wenhu
    VISUAL COMPUTER, 2024, : 4081 - 4095