On Randic spectrum of zero divisor graphs of commutative ring Zn

被引:6
作者
Rather, Bilal A. [1 ]
Pirzada, S. [1 ]
Bhat, M. Imran [2 ]
Chishti, T. A. [3 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, India
[2] Cent Univ Kashmir, Dept Math, Kashmir, India
[3] Univ Kashmir, Math Sect, DDE, Srinagar, India
关键词
Randic  matrix; spectrum; zero divisor graph; commutative rings; LAPLACIAN SPECTRUM; EIGENVALUES;
D O I
10.22049/CCO.2021.27202.1212
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a finite commutative ring Z(n) with identity 1 not equal 0, the zero divisor graph Gamma(Z(n)) is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices x and y are adjacent if and only if xy = 0. We find the Randic spectrum of the zero divisor graphs Gamma(Z(n)), for various values of n and characterize n for which Gamma(Z(n)) is Randic integral.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 19 条
[1]   BECK COLORING OF A COMMUTATIVE RING [J].
ANDERSON, DD ;
NASEER, M .
JOURNAL OF ALGEBRA, 1993, 159 (02) :500-514
[2]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[3]  
Andrade E, 2017, MATCH-COMMUN MATH CO, V77, P61
[4]  
Bozkurt SB, 2010, MATCH-COMMUN MATH CO, V64, P239
[5]   Spectra of graphs obtained by a generalization of the join graph operation [J].
Cardoso, Domingos M. ;
de Freitas, Maria Aguieiras A. ;
Martins, Enide Andrade ;
Robbiano, Maria .
DISCRETE MATHEMATICS, 2013, 313 (05) :733-741
[6]   Laplacian eigenvalues of the zero divisor graph of the ring Zn [J].
Chattopadhyay, Sriparna ;
Patra, Kamal Lochan ;
Sahoo, Binod Kumar .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 584 :267-286
[7]  
Cvetkovic D., 2010, Lond. Math. Soc. Stud. Texts, DOI DOI 10.1017/CBO9780511801518
[8]   Relationships between Randic index and other topological indices [J].
Du, Z. ;
Jahanbani, A. ;
Sheikholeslami, S. M. .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) :137-154
[9]  
Horn R. A., 1985, MATRIX ANAL
[10]   On normalized Laplacian spectrum of zero di-visor graphs of commutative ring Zn [J].
Pirzada, S. ;
Rather, Bilal A. ;
Chishti, T. A. ;
Samee, U. .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) :331-345